We have developed one versatile spatially confined self-assembly strategy to integrate cyanometallate-based coordination polymers with functional metal oxides into well-defined core@shell heterostructures. The structure, composition, size and morphology of the heterostructures could be facilely controlled. The obtained Fe3O4@Prussian blue heterostructure was evaluated as an appealing multifunctional thermal ablation agent exhibiting response to both magnetic field and light irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cc10097b | DOI Listing |
Int J Biol Macromol
January 2025
College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:
Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India. Electronic address:
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss.
View Article and Find Full Text PDFBiomaterials
January 2025
Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China. Electronic address:
The secondary near-infrared region (NIR-II) fluorescence imaging-guided photothermal therapy (PTT) offers a noninvasive and light-controllable treatment option for deep-seated cancers. However, the development of NIR-II photothermal agents (NIR-II PTAs) that possess the desired properties of high molar absorption coefficient (ε), fluorescence quantum yield (QY), and photothermal conversion efficiency (PCE) remain a challenge due to the contradiction between radiative and nonradiative processes. Herein, we propose a novel side-chain heteroatom substitution engineering strategy to simultaneously enhance ε, QY, and PCE by modifying the molecular planarity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China.
Triplet-sensitization has been proven invaluable for creating photoswitches operated over a full visible-light spectrum. While designing efficient triplet-sensitizers is crucial for establishing visible-light photochromism, it remains an appealing yet challenging task. In this work, we propose a versatile strategy to fabricate triplet-sensitizers with intermolecular charge-transfer complexes (CTCs).
View Article and Find Full Text PDFBraz J Biol
January 2025
Near East University, Operational Research Center in Healthcare, Mersin, Turkey.
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!