CCAAT/enhancer binding protein α (C/EBPα) dimerizes via its leucine zipper (LZ) domain to bind DNA via its basic region and activate transcription via N-terminal trans-activation domains. The activity of C/EBPα is modulated by several serine/threonine kinases and via sumoylation, its gene is activated by RUNX1 and additional transcription factors, its mRNA stability is modified by miRNAs, and its mRNA is subject to translation control that affects AUG selection. In addition to inducing differentiation, C/EBPα inhibits cell cycle progression and apoptosis. Within hematopoiesis, C/EBPα levels increase as long-term stem cells progress to granulocyte-monocyte progenitors (GMP). Absence of C/EBPα prevents GMP formation, and higher levels are required for granulopoiesis compared to monopoiesis. C/EBPα interacts with AP-1 proteins to bind hybrid DNA elements during monopoiesis, and induction of Gfi-1, C/EBPε, KLF5, and miR-223 by C/EBPα enables granulopoiesis. The CEBPA ORF is mutated in approximately 10 % of acute myeloid leukemias (AML), leading to expression of N-terminally truncated C/EBPαp30 and C-terminal, in-frame C/EBPαLZ variants, which inhibit C/EBPα activities but also play additional roles during myeloid transformation. RUNX1 mutation, CEBPA promoter methylation, Trib1 or Trib2-mediated C/EBPαp42 degradation, and signaling pathways leading to C/EBPα serine 21 phosphorylation reduce C/EBPα expression or activity in additional AML cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696001 | PMC |
http://dx.doi.org/10.1007/s12185-015-1764-6 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (HO) photosynthesis.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.
Herein, we report the synthesis of two-dimensional TaSeC (2D-TaSeC) nanosheets using electrochemical lithiation in multilayer TaSeC followed by sonication in deionized water. Multilayer TaSeC was obtained via solid-state synthesis of FeTaSeC followed by chemical etching of Fe. 2D-TaSeC exhibited promising electrocatalytic activity for the hydrogen evolution reaction from water compared to multilayer TaSeC and 2D-TaSe.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The interaction between molybdenum carbide (MoC) nanoparticles and both flat and curved graphene surfaces, serving as models for carbon nanotubes, was investigated by means of density functional theory. A variety of MoC nanoparticles with different sizes and stoichiometries have been used to explore different adsorption sites and modes across models with different curvature degrees. On flat graphene, off-stoichiometric MoC featuring more low-coordinated Mo atoms exhibits stronger interaction and increased electron transfers from the carbide to the carbon substrate.
View Article and Find Full Text PDFACS Nano
January 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Thermal energy, constantly being produced in natural and industrial processes, constitutes a significant portion of energy lost through various inefficiencies. Employing the thermogalvanic effect, thermocells (TECs) can directly convert thermal energy into electricity, representing a promising energy-conversion technology for efficient, low-grade heat harvesting. However, the use of high-cost platinum electrodes in TECs has severely limited their widespread adoption, highlighting the need for more cost-effective alternatives that maintain comparable thermoelectrochemical performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
In this work, we present a facile and straightforward approach for fabricating highly stretchable photodetectors based on AgS and TiCT MXene hybrid materials. These devices exhibit exceptional mechanical resilience, maintaining stable electrical and optical performance even after 10 000 cycles of 30% strain. The incorporation of MXene not only enhances the device's electrical durability but also ensures the retention of conductivity under significant mechanical deformation, positioning MXene as a critical material for the advancement of flexible electronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!