Use of MALDI-TOF mass spectrometry fingerprinting to characterize Enterococcus spp. and Escherichia coli isolates.

J Proteomics

Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal. Electronic address:

Published: September 2015

Unlabelled: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a faster and more accurate method to identify intact bacteria than conventional microbiology and/or molecular biology methods. The MALDI-TOF MS method is potentially applicable in diagnostic laboratories to characterize commensal bacterial species, some of which are major pathogens, from human or animal gastrointestinal tracts. The aim of this study was to analyze at the cluster and statistical level the capacity of MALDI-TOF MS to distinguish between previously characterized enterococci and Escherichia coli isolated from wild birds of the Azores archipelago. Soluble proteins were extracted from intact cell cultures of 60 isolates of Enterococcus spp. and 60 isolates of E. coli by an expedient method. MALDI-TOF MS was used to obtain 1200 mass spectra that were statistically analyzed and compared. A total of 215 distinct mass-to-charge (m/z) peaks were obtained, including a peak at m/z 4428±3, which is exclusively found in spectra from Enterococcus isolates, and peaks at m/z 5379±3 and m/z 6253±3, which are only detected in spectra from E. coli isolates. By processing mass spectra and analyzing them statistically with MassUp software, including principal component analysis (PCA) and clustering, it was possible to correctly distinguish between isolates of Enterococcus and Escherichia genera. The results of the proteomic analysis confirm that these tools could be used to characterize whole bacterial cells. In the future, with an optimized protocol for obtaining plasmid-associated proteins and the further development of bioinformatics methods, it is likely that mass peak characteristic of antimicrobial resistance will be detected, increasing the potential usefulness of MALDI-TOF in routine clinical assays.

Biological Significance: This study highlights the importance of MALDI-TOF MS in the rapid and reliable identification of bacteria by whole-cell analysis. The mass spectrometry approach performed in this study further contributes for the microbial biomarker discovery culminating in a preferable bacteria identification and antimicrobial resistance tool for the future of clinical microbiology. This article is part of a Special Issue entitled: HUPO 2014.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2015.02.017DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
enterococcus spp
8
escherichia coli
8
coli isolates
8
isolates enterococcus
8
mass spectra
8
antimicrobial resistance
8
maldi-tof
7
isolates
6
mass
5

Similar Publications

Multiomics in cancer biomarker discovery and cancer subtyping.

Adv Clin Chem

January 2025

School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea. Electronic address:

The advent of multiomics has ushered in a new era of cancer research characterized by integrated genomic, transcriptomic and proteomic analysis to unravel the complexities of cancer biology and facilitate the discovery of novel biomarkers. This chapter provides a comprehensive overview of the concept of multiomics, detailing the significant advances in the underlying technologies and their contributions to our understanding of cancer. It delves into the evolution of genomics and transcriptomics, breakthroughs in proteomics, and overarching progress in multiomic methodologies, highlighting their collective impact on cancer biomarker discovery.

View Article and Find Full Text PDF

Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.

Adv Clin Chem

January 2025

Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:

Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.

View Article and Find Full Text PDF

This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways.

View Article and Find Full Text PDF

In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.

View Article and Find Full Text PDF

The effect of Inhaled Nitric Oxide Treatment on Biomarkers of Oxidative/Nitrosative Damage to Proteins and DNA/RNA.

Free Radic Biol Med

January 2025

Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; Neonatal Research Group, Health Research Institute Hospital La Fe (IISLAFE), Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; Spanish Network in Maternal, Neonatal, Child and Developmental Health Research (RICORS SAMID) (RD24/0013/0014), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator that is used as a treatment for persistent pulmonary hypertension in neonates (PPHN) with hypoxic respiratory failure. The generation of reactive oxygen and nitrogen species might induce oxidative/nitrosative damage to multiple organs. There is an increasing scientific and clinical interest in the determination of specific biomarkers to measure the degree of oxidative/nitrosative stress in non-invasively collected biofluids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!