How do disordered regions achieve comparable functions to structured domains?

Protein Sci

MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.

Published: June 2015

The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4456105PMC
http://dx.doi.org/10.1002/pro.2674DOI Listing

Publication Analysis

Top Keywords

disordered regions
8
functions structured
8
regions idrs
8
regions achieve
4
achieve comparable
4
comparable functions
4
structured domains?
4
domains? traditional
4
traditional structure
4
structure function
4

Similar Publications

Disordered regions are an important functional feature of many multidomain proteins. A prime example is proteins in membraneless organelles, which contain folded domains that engage in specific interactions and disordered low-complexity (LC) domains that mediate liquid-liquid phase separation. Studying these complex architectures remains challenging due to their conformational variability.

View Article and Find Full Text PDF

Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.

View Article and Find Full Text PDF

To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure.

View Article and Find Full Text PDF

Microtubule plus-end tracking proteins (+TIPs) participate in nearly all microtubule-based cellular processes and have recently been proposed to function as liquid condensates. However, their formation and internal organization remain poorly understood. Here, we have study the phase separation of Bik1, a CLIP-170 family member and key +TIP involved in budding yeast cell division.

View Article and Find Full Text PDF

Mechanisms for DNA Interplay in Eukaryotic Transcription Factors.

Annu Rev Biophys

January 2025

1CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA; email:

Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!