Alternative splicing of the LIM-homeodomain transcription factor Isl1 in the mouse retina.

Mol Cell Neurosci

Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, United States; Department of Psychological & Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, United States. Electronic address:

Published: March 2015

Islet-1 (Isl1) is a LIM-homeodomain (LIM-HD) transcription factor that functions in a combinatorial manner with other LIM-HD proteins to direct the differentiation of distinct cell types within the central nervous system and many other tissues. A study of pancreatic cell lines showed that Isl1 is alternatively spliced generating a second isoform, Isl1β, which is missing 23 amino acids within the C-terminal region. This study examines the expression of the canonical and alternative Isl1 transcripts across other tissues, in particular, within the retina, where Isl1 is required for the differentiation of multiple neuronal cell types. The alternative splicing of Isl1 is shown to occur in multiple tissues, but the relative abundance of Isl1α and Isl1β expression varies greatly across them. In most tissues, Isl1α is the more abundant transcript, but in others the transcripts are expressed equally, or the alternative splice variant is dominant. Within the retina, differential expression of the two Isl1 transcripts increases as a function of development, with dynamic changes in expression peaking at E16.5 and again at P10. At the cellular level, individual retinal ganglion cells vary in their expression, with a subset of small-to-medium sized cells expressing only the alternative isoform. The functional significance of the difference in protein sequence between the two Isl1 isoforms was also assessed using a luciferase assay, demonstrating that the alternative isoform forms a less effective transcriptional complex for activating gene expression. These results demonstrate the differential presence of the canonical and alternative isoforms of Isl1 amongst retinal ganglion cell classes. As Isl1 participates in the differentiation of multiple cell types within the CNS, the present results support a role for alternative splicing in the establishment of cellular diversity in the developing nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393802PMC
http://dx.doi.org/10.1016/j.mcn.2015.03.006DOI Listing

Publication Analysis

Top Keywords

alternative splicing
12
cell types
12
isl1
10
alternative
8
transcription factor
8
nervous system
8
canonical alternative
8
isl1 transcripts
8
differentiation multiple
8
retinal ganglion
8

Similar Publications

Systemic lupus erythematosus (SLE) is an autoimmune disease with complex clinical manifestations and no current cure. Alternative splicing (AS) plays a key role in SLE by regulating immune-related genes, but its genome-wide regulatory mechanisms remain unclear. To investigate the involvement of abnormal splicing regulators and AS events in the immune regulation of SLE.

View Article and Find Full Text PDF

Objective: To investigate the effect of different isoforms of on the proliferation of multiple myeloma (MM) cells after alternative splicing mediated by splicing factor .

Methods: RT-PCR was used to detect the expression levels of mRNA splicing isoforms regulated by . The GEO database was used to analyze the changes of isoform 1 in the progression of plasma cell disease, and survival analysis was used to evaluate the value of this gene in the prognosis of MM patients.

View Article and Find Full Text PDF

hnRNPLL regulates MYOF alternative splicing and correlates with early metastasis in pancreatic ductal adenocarcinoma.

Cancer Lett

December 2024

Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Gastrointestinal Cancer Institute/Pancreatic Disease Institute, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer known for its high rate of early metastasis, necessitating the discovery of the underlying mechanisms. Herein, we report that heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) expression significantly increases at the invasion forefront in PDAC and is associated with early metastasis and poor prognosis. Our findings revealed that hnRNPLL knockdown resulted in extensive exon skipping (ES) events.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease characterized by persistent inflammatory responses throughout all stages of its progression. Modulating these inflammatory responses is a promising avenue for the development of cardiovascular disease therapies. Splicing events modulate gene expression and diversify protein functionality, exerting pivotal roles in the inflammatory mechanisms underlying atherosclerosis.

View Article and Find Full Text PDF

Research progress on gene mutations and drug resistance in leukemia.

Drug Resist Updat

December 2024

Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China. Electronic address:

Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!