The interplay between mitogenic and proinflammatory signaling pathways plays key roles in determining the phenotypes and clinical outcomes of breast cancers. Using GRO-seq in MCF-7 cells, we defined the immediate transcriptional effects of crosstalk between estradiol (E2) and TNFα, identifying a large set of target genes whose expression is rapidly altered with combined E2 + TNFα treatment, but not with either agent alone. The pleiotropic effects on gene transcription in response to E2 + TNFα are orchestrated by extensive remodeling of the ERα enhancer landscape in an NF-κB- and FoxA1-dependent manner. In addition, expression of the de novo and synergistically regulated genes is strongly associated with clinical outcomes in breast cancers. Together, our genomic and molecular analyses indicate that TNFα signaling, acting in pathways culminating in the redistribution of NF-κB and FoxA1 binding sites across the genome, creates latent ERα binding sites that underlie altered patterns of gene expression and clinically relevant cellular responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385449 | PMC |
http://dx.doi.org/10.1016/j.molcel.2015.02.001 | DOI Listing |
Sci Rep
January 2025
Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.
The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.
View Article and Find Full Text PDFNat Commun
January 2025
Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.
The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria. Electronic address:
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:
Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States. Electronic address:
Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!