Pulmonary arterial hypertension (PAH) is a lethal disease characterized by pulmonary vascular obstruction due in part to excessive pulmonary artery endothelial cells (PAECs) migration and proliferation. The mitochondrial fission protein dynamin-related protein-1 (DRP1) has important influence on pulmonary vascular remodeling. However, whether DRP1 participates in the development and progression of pulmonary vascular angiogenesis has not been reported previously. To test the hypothesis that DRP1 promotes the angiogenesis via promoting the proliferation, stimulating migration, and inhibiting the apoptosis of PAECs in mitochondrial Ca(2+)-dependent manner, we performed following studies. Using hemodynamic analysis and morphometric assay, we found that DRP1 mediated the elevation of right ventricular systemic pressure (RVSP), right heart hypertrophy, and increase of pulmonary microvessels induced by hypoxia. DRP1 inhibition reversed tube network formation in vitro stimulated by hypoxia. The mitochondrial Ca(2+) inhibited by hypoxia was recovered by DRP1 silencing. Moreover, pulmonary vascular angiogenesis promoted by DRP1 was reversed by the specific mitochondrial Ca(2+) uniporter inhibitor Ru360. In addition, DRP1 promoted the proliferation and migration of PAECs in mitochondrial Ca(2+)-dependent manner. Besides, DRP1 decreased mitochondrial membrane potential, reduced the DNA fragmentation, and inhibited the caspase-3 activation, which were all aggravated by Ru360. Therefore, these results indicate that the mitochondrial fission machinery promotes migration, facilitates proliferation, and prevents from apoptosis via mitochondrial Ca(2+)-dependent pathway in endothelial cells leading to pulmonary angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.25154DOI Listing

Publication Analysis

Top Keywords

pulmonary vascular
20
vascular angiogenesis
12
mitochondrial ca2+-dependent
12
pulmonary
9
drp1
9
endothelial cells
8
mitochondrial
8
mitochondrial fission
8
paecs mitochondrial
8
ca2+-dependent manner
8

Similar Publications

The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease.

Int J Mol Sci

December 2024

Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right heart failure, with emerging evidence suggesting a key role for immune dysregulation in its pathogenesis. This study aimed to assess the involvement of lymphocytes, particularly regulatory T cells (Tregs), and the expression of immune checkpoint molecules PD-1 and PD-L1 on peripheral blood subpopulations in patients diagnosed with PAH. The study involved 25 patients; peripheral blood mononuclear cells were isolated and subsequently analyzed using flow cytometry to quantify the Treg cell percentage and evaluate PD-1 and PD-L1 expression across the T and B cells.

View Article and Find Full Text PDF

Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis.

View Article and Find Full Text PDF

: Coinfection with SARS-CoV-2 and extrapulmonary tuberculosis (extraPTB) presents unique clinical challenges due to dual inflammatory responses and potential differences in patient profiles compared to those with SARS-CoV-2 infection alone. This study uniquely contributes to the underexplored interaction between extraPTB and SARS-CoV-2, focusing on systemic inflammation as a critical determinant of outcomes. This retrospective, cross-sectional study included 123 patients aged 19-91 years, hospitalized at Victor Babeș Hospital in Timișoara from March 2020 to March 2022.

View Article and Find Full Text PDF

Establishing an Extracorporeal Cardiopulmonary Resuscitation Program.

Medicina (Kaunas)

December 2024

Department of Health Science, Anesthesia and ICU, School of Medicine, University of Basilicata San Carlo Hospital, 85100 Potenza, Italy.

Extracorporeal cardiopulmonary resuscitation (ECPR) is a complex, life-saving procedure that uses mechanical support for patients with refractory cardiac arrest, representing the pinnacle of extracorporeal membrane oxygenation (ECMO) applications. Effective ECPR requires precise patient selection, rapid mobilization of a multidisciplinary team, and skilled cannulation techniques. Establishing a program necessitates a cohesive ECMO system that promotes interdisciplinary collaboration, which is essential for managing acute cardiogenic shock and severe pulmonary failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!