A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Measurement and application of CO2 spectroscopic parameters near 2.0 μm]. | LitMetric

The accuracy of absorption spectral parameters is very important for the trace gas measurement based on absorption spectroscopy techniques, especially for the isotopic abundance measurement of gas molecules. For some of the applications, spectral parameters listed in HITRAN database were used to retrieve the trace gas concentration. However, these parameters have uncertainty, in order to validate spectroscopic parameters near 2.0 μm of CO2 lines, which are to be used in detecting the CO2 concentration and isotopic abundance, spectra of those lines were recorded at room temperature using a distributed feed-back (DFB) diode laser. The recorded absorption spectra were fitted to Voigt profile. Line position, intensity, self-broadening coefficient and N2-broadening coefficient were deduced from those data. The results show a good consistency in comparison with those listed in HITRAN2012 database. The discrepancy of most line intensities and self-broadening coefficients are less than 2%. The CO2 concentration and Δ(13 CO2 ) in real atmosphere inside laboratory are 440 ppm and -9 per hundred respectively. These results provide a reliable basis for real time and on line detecting the CO2 concentration and Δ(13 CO2) in the wavelength range.

Download full-text PDF

Source

Publication Analysis

Top Keywords

co2 concentration
12
spectroscopic parameters
8
spectral parameters
8
trace gas
8
isotopic abundance
8
detecting co2
8
concentration Δ13
8
Δ13 co2
8
co2
7
parameters
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!