Muscle-specific deletion of comparative gene identification-58 (CGI-58) causes muscle steatosis but improves insulin sensitivity in male mice.

Endocrinology

Departments of Biochemistry (P.X., Y.M., F.G., L.Y.) and Anesthesiology (L.G.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Animal and Avian Sciences (A.K.G.G., Y.M., L.Y.), University of Maryland, College Park, Maryland 20742; Diabetes and Obesity Research Center (X.H., M.W.), Sanford-Burnham Medical Research Institute, Orlando, Florida 32827; Department of Biology (B.X., H.S.), Georgia State University, Atlanta, Georgia 30303; and The Key Laboratory of Remodeling-Related Cardiovascular Diseases (H.L.), Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated the Capital Medical University, Beijing 100029, People's Republic of China.

Published: May 2015

Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-α/peroxisome proliferator-activated receptor-γ coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398773PMC
http://dx.doi.org/10.1210/en.2014-1892DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
12
comparative gene
8
gene identification-58
8
identification-58 cgi-58
8
muscle-specific cgi-58
8
cgi-58 knockout
8
knockout mice
8
increased glucose
8
high-fat diet
8
cgi-58
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!