Nature's selection of the contemporary nucleobases in RNA and DNA continues to intrigue the origin of life community. While the prebiotic synthesis of the -glycosyl bond has historically been a central area of investigation, variations in hydrolytic stabilities among the -glycosyl bonds may have presented an additional selection pressure that contributed to nucleobase and nucleoside evolution. To experimentally probe this hypothesis, a systematic kinetic analysis of the hydrolytic deglycosylation reactions of modified, alternative and native nucleosides was undertaken. Rate constants were measured as a function of temperature (at pH 1) to produce Arrhenius and Eyring plots for extrapolation to 37°C and determination of thermodynamic activation parameters. Rate enhancements based on the differences in reaction rates of deoxyribo- and ribo-glycosidic bonds were found to vary under the same conditions. Rate constants of deoxynucleosides were also measured across the pH range of 1 - 3 (at 50°C), which highlighted how simple changes to the heterocycle alone can lead to significant variation in deglycosylation rates. The contemporary nucleosides exhibited the slowest deglycosylation rates in comparison to the non-native/alternative nucleosides, which we suggest as experimental support for nature's selection of the fittest -glycosyl bonds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349208 | PMC |
http://dx.doi.org/10.1002/poc.3318 | DOI Listing |
Food Chem
January 2025
Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, NC Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States. Electronic address:
Barley (Hordeum vulgare L.; Poaceae), the second most important grain after wheat, contains phenolamides, specifically hordatines and their agmatinated precursors. Hordatines are the unique compounds found in barley, consumption of which is associated with beneficial effects for human health.
View Article and Find Full Text PDFNano Lett
January 2025
Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica, 5000, Slovenia.
Background: E. coli still remains the most commonly used organism to produce recombinant proteins in research labs. This condition is mirrored by the attention that researchers dedicate to understanding the biology behind protein expression, which is then exploited to improve the effectiveness of the technology.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.
Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!