Background: Live animal studies using an inoculation model of breast cancer indicate that anaesthetic drugs and techniques differentially affect cancer metastasis, inversely related to Natural Killer (NK) cell and T lymphocyte levels. Clinical histological studies demonstrate that the distribution of these immune cells and macrophages in intra-tumoral cancer tissue can predict prognosis and response to therapy. No study has evaluated whether the anaesthetic technique influences human breast cancer immune cell infiltration.
Materials And Methods: Excised breast cancer specimens from patients previously enrolled in an ongoing, prospective, randomised trial (NCT00418457) investigating the effect of anaesthetic technique on long-term breast cancer outcome were immunohistochemically stained to enable a colour deconvolution technique to summate marked immune cell infiltration: CD56 (NK cells), CD4 (T helper cells), CD8 (T suppressor cells) and CD68 (macrophages). Patients were randomised to receive either a propofol-paravertebral anaesthetic with continuing analgesia (PPA, n=12) or a balanced general anaesthesia with opioid analgesia (GA, n=16) for 24 h postoperatively. Investigators were masked to group allocation.
Results: Normalised positive intensity values, (median (interquartile range (IQR)), for CD56 were lower in GA121 (116-134) versus 136 (132-142), p=0.015. CD4 was also lower in GA10.9 (5.5-27.8) versus PPA 19.7 (14.4-83.5), p=0.03 but CD8 5.5 (4.0-9.75) versus 13.0 (5.0-14.5) respectively, p=0.24 and CD 68 infiltration 5.8 (3.25-8.75) versus 8.0 (3.0-8.75), p=0.74 were not significantly different.
Conclusion: PPA induces increased levels of NK and T helper cell infiltration into breast cancer tissue compared with GA but not T suppressor cells or macro phages. This is consistent with the hypothesis that the anaesthetic technique may affect perioperative immune function conducive to resisting breast cancer recurrence and metastasis.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFAnn Surg Oncol
December 2024
Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
Background: Benzodiazepines are the third most misused medication, with many patients having their first exposure during a surgical episode. We sought to characterize factors associated with new persistent benzodiazepine use (NPBU) among patients undergoing cancer surgery.
Patients And Methods: Patients who underwent cancer surgery between 2013 and 2021 were identified using the IBM-MarketScan database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!