Contact between the acetabulum and dome of a Kerboull-type plate influences the stress on the plate and screw.

Eur J Orthop Surg Traumatol

Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan.

Published: July 2015

We used a three-dimensional finite element method to investigate the conditions behind the Kerboull-type (KT) dome. The KT plate dome was divided into five areas, and 14 models were created to examine different conditions of dome contact with the acetabulum. The maximum stress on the KT plate and screws was estimated for each model. Furthermore, to investigate the impact of the contact area with the acetabulum on the KT plate, a multiple regression analysis was conducted using the analysis results. The dome-acetabulum contact area affected the maximum equivalent stress on the KT plate; good contact with two specific areas of the vertical and horizontal beams (Areas 3 and 5) reduced the maximum equivalent stress. The maximum equivalent stress on the hook increased when the hardness of the bone representing the acetabulum varied. Thus, we confirmed the technical importance of providing a plate with a broad area of appropriate support from the bone and cement in the posterior portion of the dome and also proved the importance of supporting the area of the plate in the direction of the load at the center of the cross-plate and near the hook.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00590-015-1623-4DOI Listing

Publication Analysis

Top Keywords

stress plate
12
maximum equivalent
12
equivalent stress
12
contact acetabulum
8
plate
8
contact area
8
contact
5
dome
5
stress
5
acetabulum dome
4

Similar Publications

Objective: Finite element analysis (FEA) of the biomechanical properties of the modified extraoral distractor device used in the mandibular distraction of craniofacial microsomia patients.

Materials And Methods: Finite element analysis (FEA) models of 5 patients under 2 working conditions, the instance when the distractor is activated and when the distractor participates in mastication, were included in the current study. To conduct the FEA, load boundary conditions (35.

View Article and Find Full Text PDF

Positive associations between mean ambient temperature and involuntary admissions to psychiatric facilities.

Eur Psychiatry

January 2025

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.

Background: Temperature increases in the context of climate change affect numerous mental health outcomes. One such relevant outcome is involuntary admissions as these often relate to severe (life)threatening psychiatric conditions. Due to a shortage of studies into this topic, relationships between mean ambient temperature and involuntary admissions have remained largely elusive.

View Article and Find Full Text PDF

Background: Severe metaphyseal comminution and sizable bone defect of the distal femur are high risks of fixation failure. To date, no exact magnitude of comminution and bone loss is determined as an indication for augmentation of fixation construct. The present study aimed to investigate the influence of metaphyseal gap width, working length, and screw distribution on the stability of the fixation construct.

View Article and Find Full Text PDF

Isosteviol Sodium Promotes Neurological Function Recovery in a Model of Spinal Cord Injury in Rats.

Immun Inflamm Dis

January 2025

School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.

Background: Traumatic spinal cord injury (SCI) is an incurable condition that is the largest cause of disability. In previous studies, Isosteviol sodium (STVNa) has been shown to protect rats against acute focal cerebral ischemia; however, the effects of STVNa on SCI recovery in rats remain unknown.

Methods: STVNa was given intraperitoneally after SCI to see if it had any neuroprotective benefits.

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!