In this review, fundamental aspects of the untargeted NMR-based methodology applied to fruit characterization are described. The strategy to perform the structure elucidation of fruit metabolites is discussed with some examples of spectral assignments by 2D experiments. Primary ubiquitous metabolites as well as secondary species-specific metabolites, identified in different fruits using an untargeted 1H-NMR approach, are summarized in a comprehensive way. Crucial aspects regarding the quantitative elaboration of spectral data are also discussed. The usefulness of the NMR-based metabolic profiling was highlighted using some results regarding quality, adulteration, varieties and geographical origin of fruits and fruit-derived products such as juices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272596 | PMC |
http://dx.doi.org/10.3390/molecules20034088 | DOI Listing |
Molecules
December 2024
Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide despite significant improvements in diagnostic modalities. Emerging evidence suggests that erythrocytes, or red blood cells (RBCs), are one of the most important contributors to the events implicated in atherosclerosis, although the molecular mechanisms behind it are under investigation. We used NMR-based lipidomic technology to investigate the RBC lipidome in patients with CHD compared to those with normal coronary arteries (NCAs), all angiographically documented, and its correlation with coronary artery stenosis.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy.
A combination of pathway enrichment and metabolite clustering analysis is used to interpret untargeted H NMR metabolomics data, enabling a biochemically informative comparison of the effects induced by a panel of known cytotoxic gold(I) and gold(III) compounds in A2780 ovarian cancer cells. The identification of the most dysregulated pathways for the major classes of compounds highlights specific chemical features that lead to common biological effects. The proposed approach may have broader applicability to the screening of metal-based drug candidate libraries, which is always complicated by their multitarget nature, and support the comprehensive interpretation of their metabolic actions.
View Article and Find Full Text PDFMetabolites
November 2024
School of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China.
: Clinical findings have shown a negative correlation between the severity of depressive symptoms and serum uric acid levels in men, yet the role of metabolic regulation in the pathophysiology of depression remains largely unknown. : In this study, we utilized an acute restraint-stress-induced male rat model of depression to investigate biochemical changes through NMR-based metabolomics combined with serum biochemical analysis. Additionally, we employed qPCR, immunoblotting, and enzyme activity assays to assess the expression and activity of xanthine oxidoreductase, the rate-limiting enzyme in uric acid production.
View Article and Find Full Text PDFJ Proteome Res
December 2024
CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Pharmacological targeting of metabolic pathways represents an appealing strategy to selectively kill cancer cells while promoting antitumor functions of stromal cells. In this study, we assessed the effectiveness of 13 metabolic drugs (MDs) in steering generated breast tumor-educated macrophages (TEMs) toward an antitumoral phenotype. For that, the production of vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF-α), two important regulators of tumor progression, was evaluated.
View Article and Find Full Text PDFMethods Mol Biol
October 2024
Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
Cell cultures are widely used in studies to gain mechanistic insights of metabolic processes. The foundation of these studies lies on the quantification of intracellular and extracellular metabolites, and nuclear magnetic resonance (NMR) is one of the key analytical platforms used to this aim. Among the factors influencing the quality of the produced data are the sampling procedures as well as the acquisition and processing of spectroscopic data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!