The efficiency of second order orientation coherence detection.

Vision Res

McGill Vision Research, Dept. Ophthalmology, McGill University, Montreal, PQ, Canada.

Published: April 2015

Neurons in early visual cortex respond to both luminance- (1st order) and contrast-modulated (2nd order) local features in the visual field. In later extra-striate areas neurons with larger receptive fields integrate information across the visual field. For example, local luminance-defined features can be integrated into contours and shapes. Evidence for the global integration of features defined by contrast-modulation is less well established. While good performance in some shape tasks has been demonstrated with 2nd order stimuli, the integration of contours fails with 2nd order elements. Recently we developed a global orientation coherence task that is more basic than contour integration, bearing similarity to the well-established global motion coherence task. Similar to our previous 1st order result for this task, we find 2nd order coherence detection to be scale-invariant. There was a small but significant threshold elevation for 2nd order relative to 1st order. We used a noise masking approach to compare the efficiency of orientation integration for the 1st and 2nd order. We find a significant deficit for 2nd order detection at both the local and global level, however the small size of this effect stands in stark contrast against previous results from contour-integration experiments, which are almost impossible with 2nd order stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2015.01.026DOI Listing

Publication Analysis

Top Keywords

2nd order
32
order
12
1st order
12
orientation coherence
8
coherence detection
8
2nd
8
visual field
8
order stimuli
8
coherence task
8
efficiency second
4

Similar Publications

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

The medicinal potential of plant extracts, especially their antimicrobial, antioxidant, antiviral and cytotoxic properties, has gained significant attention in recent years. This study examined the in vitro bioactivities of several selected Greek medicinal plants, like L., L.

View Article and Find Full Text PDF

This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Visible light induced photocatalytic degradation of norfloxacin using xC-TiO.

Heliyon

January 2025

Institute of Chemical Sciences, University of Swat, Swat, 19120, Khyber Pakhtunkhwa, Pakistan.

In recent years, antibiotic pollution has become a major environmental concern. The extensive production and widespread use of prescribed antibiotics have significantly impacted ecosystems. The main objective of the present study is to investigate the photocatalytic degradation of the antibiotic norfloxacin (NFX) under visible light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!