Mechanisms of amyloid fibril formation.

Biochemistry (Mosc)

Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.

Published: December 2014

Amyloid and amyloid-like aggregates are elongated unbranched fibrils consisting of β-structures of separate monomers positioned perpendicular to the fibril axis and stacked strictly above each other. In their physicochemical properties, amyloid fibrils are reminiscent of synthetic polymers rather than usual proteins because they are stable to the action of denaturing agents and proteases. Their mechanical stability can be compared to a spider's web, that in spite of its ability to stretch, is stronger than steel. It is not surprising that a large number of diseases are accompanied with amyloid fibril depositing in different organs. Pathologies provoked by depositing of incorrectly folded proteins include Alzheimer's, Parkinson's, and Huntington's diseases. In addition, this group of diseases involves mucoviscidosis, some types of diabetes, and hereditary cataracts. Each type of amyloidosis is characterized by aggregation of a certain type of protein that is soluble in general, and thus leads to specific distortions of functions of the corresponding organs. Therefore, it is important to understand the process of transformation of "native" proteins to amyloid fibrils to clarify how these molecules acquire such strength and what key elements of this process determine the pathway of erroneous protein folding. This review presents our analysis of complied information on the mechanisms of formation and biochemical properties of amyloid fibrils.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297914130057DOI Listing

Publication Analysis

Top Keywords

amyloid fibrils
12
amyloid fibril
8
properties amyloid
8
amyloid
5
mechanisms amyloid
4
fibril formation
4
formation amyloid
4
amyloid amyloid-like
4
amyloid-like aggregates
4
aggregates elongated
4

Similar Publications

Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model.

Inflamm Regen

January 2025

Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.

Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.

View Article and Find Full Text PDF

The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.

View Article and Find Full Text PDF

Neuroprotective role of mirabegron: Targeting beta-3 adrenergic receptors to alleviate ulcerative colitis-associated cognitive impairment.

Biomed Pharmacother

January 2025

Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

While cognitive impairment has been documented in ulcerative colitic patients, the possible influence of central β3-adrenergic receptor (β3-AR) signaling on this extraintestinal manifestation remains unclear. Previously, we identified an imperative role for mirabegron (MA) as an agonist of β3-AR, in decreasing the BACE-1/beta-amyloid (Aβ) cue in the colons of UC rats. Consequently, we investigated its therapeutic potential for alleviating cognitive impairment associated with UC.

View Article and Find Full Text PDF

Human amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!