Postmortem studies have suggested that there is abnormal GABAergic activity in the hippocampus in schizophrenia (SZ). In micro-dissected human hippocampal slices, a loss of interneurons and a compensatory upregulation of GABAA receptor binding activity on interneurons, but not PNs, has suggested that disinhibitory GABA-to-GABA connections are abnormal in stratum oriens (SO) of CA3/2, but not CA1, in schizophrenia. Abnormal expression changes in the expression of kainate receptor (KAR) subunits 5, 6 and 7, as well as an inwardly-rectifying hyperpolarization-activated cationic channel (Ih3; HCN3) may play important roles in regulating GABA cell activity at the SO CA3/2 locus. The exclusive neurons at this site are GABAergic interneurons; these cells also receive direct projections from the basolateral amygdala (BLA). When the BLA is stimulated by stereotaxic infusion of picrotoxin in rats, KARs influence axodendritic and presynaptic inhibitory mechanisms that regulate both inhibitory and disinhibitory interneurons in the SO-CA3/2 locus. The rat model described here was specifically developed to extend our understanding of these and other postmortem findings and has suggested that GABAergic abnormalities and possible disturbances in oscillatory rhythms may be related to a dysfunction of disinhibitory interneurons at the SO-CA3/2 site of schizophrenics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.schres.2015.01.014 | DOI Listing |
Brain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
Proc Natl Acad Sci U S A
November 2024
Institut Pasteur, Université Paris Cité, Neural Circuits for Space and Memory, Department of Neuroscience, Paris F-75015, France.
Cereb Cortex
September 2024
Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
Front Synaptic Neurosci
August 2024
Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.
Short-term plasticity is an important feature in the brain for shaping neural dynamics and for information processing. Short-term plasticity is known to depend on many factors including brain region, cortical layer, and cell type. Here we focus on vasoactive-intestinal peptide (VIP) interneurons (INs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!