AI Article Synopsis

  • A study analyzed 87 human protein-ligand structures from the PDB databank to explore key principles of protein-ligand interactions.
  • Molecular dynamics simulations ensured structure stability, and various interaction energies and parameters were extracted for analysis.
  • Linear regression identified significant interaction factors, which were then used to train a neural network to predict other parameters, resulting in accurate predictions, particularly for nitrogen and sulfur atoms in ligands.

Article Abstract

In order to elucidate some basic principles for protein-ligand interactions, a subset of 87 structures of human proteins with their ligands was obtained from the PDB databank. After a short molecular dynamics simulation (to ensure structure stability), a variety of interaction energies and structural parameters were extracted. Linear regression was performed to determine which of these parameters have a potentially significant contribution to the protein-ligand interaction. The parameters exhibiting relatively high correlation coefficients were selected. Important factors seem to be the number of ligand atoms, the ratio of N, O and S atoms to total ligand atoms, the hydrophobic/polar aminoacid ratio and the ratio of cavity size to the sum of ligand plus water atoms in the cavity. An important factor also seems to be the immobile water molecules in the cavity. Nine of these parameters were used as known inputs to train a neural network in the prediction of seven other. Eight structures were left out of the training to test the quality of the predictions. After optimization of the neural network, the predictions were fairly accurate given the relatively small number of structures, especially in the prediction of the number of nitrogen and sulfur atoms of the ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2015.02.016DOI Listing

Publication Analysis

Top Keywords

interaction energies
12
ligand atoms
8
neural network
8
atoms
5
structural properties
4
interaction
4
properties interaction
4
energies drug
4
drug design
4
design approach
4

Similar Publications

Monocarboxylates, transported by monocarboxylate transporters (MCTs), have been proposed to influence energy homeostasis and exhibit altered metabolism during exercise. This study investigated the association between the Asp490Glu (T1470A) (rs1049434) polymorphism of the SLC16A1 (MCT1) gene and changes in body composition in males and females with overweight or obesity. The 173 participants (56.

View Article and Find Full Text PDF

The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.

View Article and Find Full Text PDF

JMJD8 regulates adipocyte hypertrophy through the interaction with Perilipin 2.

Diabetes

January 2025

Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, US.

Adipocyte hypertrophy significantly contributes to insulin resistance and metabolic dysfunction. Our previous research established JMJD8 as a mediator of insulin resistance, noting its role in promoting adipocyte hypertrophy within an autonomous adipocyte context. Nevertheless, the precise mechanisms underlying this phenomenon remained elusive.

View Article and Find Full Text PDF

Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!