Mesenchymal stem cells, due to their multilineage differentiation potential, have emerged as a promising cell candidate for cell-based therapy. In recent years, biomaterials were artificially synthesized to control the differentiation of mesenchymal stem cells. In this study, a series of charged or neutral oligopeptide motifs coupled with RGD were synthesized and used for surface modification using quartz substrates as model. Cell behaviors on the modified surfaces with different charged oligopeptide motifs were studied. It was found that these different charged oligopeptide motifs coupled with RGD were biocompatible for cell proliferation and adhesion. Moreover, it was demonstrated that the positively charged oligopeptide motif could inhibit osteogenic differentiation, while the negatively charged and neutral oligopeptide motifs could enhance osteogenic differentiation in the presence of RGD. This work may bring us enlightenment that different charged oligopeptide motifs coupled with RGD may be used for biomaterial surface modification for different stem cell-based therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b00064 | DOI Listing |
Nat Commun
January 2025
Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.
View Article and Find Full Text PDFTheranostics
December 2024
State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
Arterial remodeling serves as a pivotal mechanism underlying the development of diseases such as hypertension. Fibulin-7 (FBLN7), an adhesion protein, remains enigmatic regarding its role in these pathological processes. This study aims to explore whether FBLN7 influences vascular remodeling and its underlying mechanisms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
Short bioactive peptide sequences are of great interest in biomaterials development. We investigate the self-assembly of a lipopeptide containing both the highly cationic CSK toll-like receptor agonist hexapeptide sequence and RGDS integrin-binding motif, i.e.
View Article and Find Full Text PDFLife Sci
January 2025
Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China. Electronic address:
Aims: Aberrant cardiac fibrosis, defined as excessive production and deposition of extracellular matrix (ECM), is mediated by myofibroblasts. ECM-producing myofibroblasts are primarily derived from resident fibroblasts during cardiac fibrosis. The mechanism underlying fibroblast-myofibroblast transition is not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!