In mammals, two active xylosyltransferase isoenzymes (EC 2.4.2.16) exist. Both xylosyltransferases I and II (XT-I and XT-II) catalyze the transfer of xylose from UDP-xylose to select serine residues in the proteoglycan core protein. Altered XT activity in human serum was found to correlate directly with various diseases such as osteoarthritis, systemic sclerosis, liver fibrosis, and pseudoxanthoma elasticum. To interpret the significance of the enzyme activity alteration observed in disease states it is important to know which isoenzyme is responsible for the XT activity in serum. Until now it was impossible for a specific measurement of XT-I or XT-II activity, respectively, because of the absence of a suitable enzyme substrate. This issue has now been solved and the following experimental study demonstrates for the first time, via the enzyme activity that XT-II is the predominant isoenzyme responsible for XT activity in human serum. The proof was performed using natural UDP-xylose as the xylose donor, as well as the artificial compound UDP-4-azido-4-deoxyxylose, which is a selective xylose donor for XT-I.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598695 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2015.02.129 | DOI Listing |
Neurochem Int
January 2025
Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland. Electronic address:
Arginase 2 (Arg2) is the predominant arginase isoenzyme in the brain, however its distribution appears to be limited to selected, region-specific subpopulations of cells. Although striatum is highly enriched with Arg2, precise localization and function of striatal Arg2 have never been studied. Here, we confirm that Arg2 is the only arginase isoenzyme in the striatum, and, using genetic model of total Arg2 loss, we show that Arg2 in this region is fully responsible for arginase catalytic activity, and its loss doesn't induce compensatory activation of Arg1.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2024
Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany.
We present a detailed mass spectrometric analysis of three 2 + 1 T-cell bispecific monoclonal antibodies (TCB mAbs), where an unexpected +15.9950 Da mass shift in tryptic peptides was observed. This modification was attributed to the occurrence of 5R-hydroxylysine (Hyl) using a hybrid LC-MS/MS molecular characterization and CRISPR/Cas9 gene deletion approach.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA. Electronic address:
In zebrafish, maternally deposited yolk is the source of nutrients for embryogenesis prior to digestive system maturation. Yolk nutrients are processed and secreted to the growing organism by an extra-embryonic tissue, the yolk syncytial layer (YSL). The export of lipids from the YSL occurs through the production of triacylglycerol-rich lipoproteins.
View Article and Find Full Text PDFGenes (Basel)
October 2024
School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China.
Trends Mol Med
October 2024
Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99223, USA. Electronic address:
Monoamine oxidases (MAOs) are a crucial pair of isoenzymes responsible for degrading monoamine neurotransmitters and dietary amines. In addition to extensive studies of their roles in the context of brain functions and disorders over decades, emerging evidence indicates that MAOs are also often dysregulated and associated with clinical outcomes in diverse cancers, with the ability to differentially regulate cancer growth, invasion, metastasis, progression, and therapy response depending on the cancer type. In this review, we summarize recent advances in understanding the clinical relevance, functional importance, and mechanisms of MAOs in a broad range of cancers, and discuss the application and therapeutic benefit of MAO inhibitors (MAOIs) for cancer treatment, highlighting the roles of MAOs as novel regulators, prognostic biomarkers, and therapeutic targets in cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!