We investigated the vasorelaxant effect of cilostazol and related signaling pathways in phenylephrine (Phe)-induced pre-contracted aortic rings. Cilostazol induced vasorelaxation in a concentration-dependent manner when aortic rings were pre-contracted with Phe. Application of the voltage-dependent K(+) (Kv) channel inhibitor 4-AP, the ATP-sensitive K(+) (K(ATP)) channel inhibitor glibenclamide, and the inwardly rectifying K(+) (Kir) channel inhibitor Ba(2+) did not alter the vasorelaxant effect of cilostazol; however, pre- and post-treatment with the big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel inhibitor paxilline inhibited the vasorelaxant effect of cilostazol. This vasorelaxant effect of cilostazol was reduced in the presence of an adenylyl cyclase or a protein kinase A (PKA) inhibitor, but not a protein kinase G inhibitor. Inside-out single channel recordings revealed that cilostazol induced the activation of BK(Ca) channel activity. The vasorelaxant effect of cilostazol was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor and a small-conductance Ca(2+)-activated K(+) (SK(Ca)) channel inhibitor did not affect cilostazol-induced vasorelaxation. We conclude that cilostazol induced vasorelaxation of the aorta through activation of BK(Ca) channel via a PKA-dependent signaling mechanism independent of endothelium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2015.01.002DOI Listing

Publication Analysis

Top Keywords

vasorelaxant cilostazol
20
channel inhibitor
20
cilostazol induced
12
bkca channel
12
cilostazol
9
aortic rings
8
induced vasorelaxation
8
channel
8
inhibitor
8
protein kinase
8

Similar Publications

Diabetes mellitus (DM) is a global health concern with a rising incidence, particularly in aging populations and those with a genetic predisposition. Over time, DM contributes to various complications, including nephropathy, retinopathy, peripheral arterial disease (PAD), and neuropathy. Among these, diabetic neuropathy and PAD stand out due to their high prevalence and significant impact on patients' quality of life.

View Article and Find Full Text PDF

Cilostazol has previously been shown to reduce liver steatosis and enhance hepatic perfusion. We investigated the effects of cilostazol after major hepatectomy in a steatotic rat model. Six weeks prior to surgery, Sprague-Dawley rats were fed with a high-fructose diet.

View Article and Find Full Text PDF

Background: Cilostazol is an antiplatelet drug and is used for stroke prevention and symptomatic peripheral vascular disease. Studies have reported the effects of cilostazol on cognitive function, but the results are inconsistent and have not been systematically assessed.

Methods: We systematically searched the PubMed, Embase, and Cochrane databases for relevant clinical studies.

View Article and Find Full Text PDF

A devasting stage of chronic hepatic dysfunction is strictly correlated with neurological impairment, signifying hepatic encephalopathy (HE). HE is a multifactorial condition; therefore, hyperammonemia, oxidative stress, neuroinflammation, and mitochondrial dysfunction interplay in HE's progressive development. Cilostazol (Cilo) has shown promising neuroprotective and hepatoprotective effectiveness in different neuronal and hepatic disorders; however, its efficiency against HE hasn't yet been explored.

View Article and Find Full Text PDF

Objective: Cilostazol is indicated for alleviating intermittent claudication (IC) in stable-phase peripheral arterial disease (PAD) patients. Conducting data mining on adverse events (AEs) of cilostazol in the U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!