Geranylgeranylacetone (GGA) has been clinically used as an anti-ulcer drug. In the present study, we explored the protective effects of GGA on lung ischemia/reperfusion injury (IRI) and the underlying mechanism. The results demonstrated that GGA ameliorated the lung biochemical and histological alterations induced by IRI, which was reversed by HSP70 inhibition. To further explore the mechanism of GGA action, we focused on NF-kB and thioredoxin (Trx) redox system. It was shown that GGA induced the HSP70 and Trx-1 expression, NF-kB nuclear translocation and activated thioredoxin reductase (TrxR). The Trx-1 expression and TrxR activity was suppressed by HSP70 and NF-kB inhibition, while the nuclear NF-kB p65 expression was suppressed by HSP70 inhibitor. These results indicated that GGA may protect rat lung against IRI by HSP70 and Trx redox system, in which NF-kB pathway may be involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2015.02.009DOI Listing

Publication Analysis

Top Keywords

redox system
12
lung ischemia/reperfusion
8
ischemia/reperfusion injury
8
system nf-kb
8
nf-kb pathway
8
pathway involved
8
trx redox
8
trx-1 expression
8
suppressed hsp70
8
hsp70
6

Similar Publications

Intratumoral delivery of Mitomycin C using bio-responsive Gellan Gum Nanogel: In-vitro evaluation and enhanced chemotherapeutic efficacy.

Int J Biol Macromol

January 2025

Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.

View Article and Find Full Text PDF

Unbalanced redox homeostasis leads to the production of reactive oxygen species and exacerbates inflammatory bowel disease. To investigate the role of the transcription factor Nrf2, a major antioxidative stress sensor, in intestinal epithelial cells (IECs), we generated IEC-specific Nrf2 gene knock-in mice (Nrf2-vRes), which express Nrf2 only in IECs, using the cre/loxp system. Colitis was induced in wild-type (WT) mice, whole-body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-vRes mice by administering dextran sulfate sodium (DSS) for 1 week (acute model) or intermittently for 5 weeks (chronic model).

View Article and Find Full Text PDF

In this study, a hydroxylamine (HA)-enhanced magnetic spinel catalyst CuFeO-activated peroxymonosulfate (PMS) system (CuFeO/PMS/HA) was constructed to degrade Sulfamethoxazole (SMX). Results from experiments and theoretical calculations indicated that active species generation mechanism involved the direct activation of PMS by HA, the redox cycles acceleration on the surface of CuFeO by HA, and the synergistic action of the low valence Fe and Cu species in CuFeO for PMS activation. The efficacy of other organic pollutants removal was further validated in bio-treated landfill leachate through removal performance and toxicity assessment.

View Article and Find Full Text PDF

Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!