Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352062 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1004076 | DOI Listing |
Chemphyschem
January 2025
Forschungszentrum Julich GmbH, Institute of Energy and Climate Research, IEK-9, Wilhelm-Johnen-Str, Julich, GERMANY.
Anode free concepts are gaining traction in battery research. To improve cyclability, a better understanding of the deposition processes and morphologies is necessary. Correlative experiments enable a link between a variety of properties obtained, such as chemical, mechanical or electrochemical data.
View Article and Find Full Text PDFEye (Lond)
January 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
Objectives: To use finite element (FE) modeling and in vivo optical coherence tomography (OCT) imaging to explore the effect of ciliary muscle traction on optic nerve head (ONH) deformation during accommodation.
Methods: We developed a FE model to mimic the ciliary muscle traction during accommodation, and varied the stiffness of the sclera, choroid, Bruch's membrane (BM), prelaminar neural tissue and lamina cribrosa (LC) to assess their effects on accommodation-induced ONH strains. To validate the FE model, OCT images of the right eyes' ONHs from 20 subjects (25 ± 1.
Eur J Dent
December 2024
Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia.
Objectives: This study aims to detect early class I, II, and III malocclusions through the muscle strength of the lips, tongue, masseter, and temporalis.
Materials And Methods: The study subjects were 30 pediatric patients with predetermined criteria. The subjects were divided into class I, II, and III malocclusions where each classification of malocclusion amounted to 10 people.
Am J Sports Med
January 2025
Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.
Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.
Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.
Sci Rep
January 2025
School of Mechanical Engineering, Southwest Jiao Tong University, Chengdu, China.
In order to reduce turnout rail wear, the paper establishes a coupled dynamics model and a turnout rail wear model that consider the true profile of the turnout rail, the vehicle's continuous traction force while passing, and the operational resistance. Comparative analysis of various models for predicting turnout rail wear indicates that the wear energy model is better suited for this purpose. The ideal profile update step for the turnout rail is 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!