Graphene is considered a next-generation electrode for indium tin oxide (ITO)-free organic photovoltaic devices (OPVs). However, to date, limited numbers of OPVs containing surface-modified graphene electrodes perform as well as ITO-based counterparts, and no devices containing a bare graphene electrode have been reported to yield satisfactory rectification characteristics. In this report, we provide experimental data to learn why. Time-resolved surface photoresponse measurements on templated pentacene-on-graphene films directly reveal that p-doped monolayer graphene efficiently extracts electrons, not holes, from photoexcited pentacene. Accordingly, a graphene/pentacene/MoO3 heterojunction displays a large surface photoresponse and, by inference, efficient dissociation of photogenerated excitons, with graphene serving as an electron extraction layer and MoO3 as a hole extraction layer. In contrast, a graphene/pentacene/C60 heterojunction yields a comparatively insignificant surface photoresponse because both graphene and C60 act as competing electron extraction layers. The data presented herein provide experimental insight for future endeavors involving bare graphene as an electrode for organic photovoltaic devices and strongly suggest that p-doped graphene is best considered a cathode for OPVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b01157 | DOI Listing |
Dalton Trans
January 2025
College of Life Sciences, School of Chemical Engineering, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang 330022, China.
The photocatalytic conversion of CO and HO into useful chemicals or fuels over semiconductor photocatalysts is regarded as a promising technology to address the problems of global warming and energy exhaustion. However, inefficient photo-absorption and slow charge dynamics limit the CO photoreduction efficiency. Here, a ternary heterojunction photocatalyst, CuCl(OH)/In/InO (Cu H IO), with an intimate interface is obtained a hydrogen chemical reduction approach followed by hydrolysis reaction, where In species can be produced on the surface of InO from the hydrogen chemical reaction with a calcining temperature of over 500 °C.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India.
Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process.
View Article and Find Full Text PDFGels
December 2024
Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., Building 22, Tver 170026, Russia.
In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
Residual antibiotics in the environment may pose threats to both ecological system and public health, necessitating the development of efficient analytical strategy for monitoring and control. This study proposes a photoelectrochemical extended-gate field-effect transistor (PEGFET) sensor for specific and sensitive detection of kanamycin. The sensor utilizes ITO glass as the extended gate electrode (photoelectrode) and titanium dioxide as the photosensitive material.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Laboratory of Medicinal Chemical Biology, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
Bioorthogonalized light-responsive click-and-uncage platform has enabled precise cell surface engineering and timed payload release, but most of such photoactivatable prodrugs have "always-on" photoactivity leading to the dark toxicity. On the other hand, the conditionally activatable photocage is limited to the application of fluorogenic probe/photosensitizer liberation. Herein, we devise a conditionally activatable theranostic platform based on the tetrazine (Tz)-boron-dipyrromethene (BODIPY) construct, in which tetrazine serves as a quencher motif to disable both the fluorescence and photoresponsivity of BODIPY.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!