The objective of this study was to evaluate the reproducibility of dose distributions in stereotactic treatment planning throughout Gamma Knife (GK) stereotactic radiosurgery (SRS) procedures in both GK model C and Perfexion (PFX). An originally-developed phantom and a radiochromic film were used for obtaining actual dose distributions. The phantom, with inserted films, was placed on a Leksell skull frame. Computed tomography (CT) was then acquired with a stereotactic localizer box attached to the frame, dose planning was made using the Leksell GammaPlan treatment planning system, and the phantom was ended up as beam delivery on an equal with clinical radiosurgery process. The reproducibility of the dose plan was provided by distance to agreement (DTA) values between planned and irradiated dose distributions calculated by dedicated film analysis software. The DTA values were determined for the isodose lines at 30%, 50%, 70%, and 90% of the maximum dose. In our study, the reproducibility of dose distributions in GK PFX was lower than in GK model C. As the results common to both units, the mean values of middle dose area (50% isodose) were about half the values of high (90% isodose) and low (30% isodose) dose area. Therefore validation of dose distributions is absolutely essential in commissioning of GK PFX. In addition, when risk organs are close to the target, dose prescription should be normalized for middle isodose line.

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.2015_JSRT_71.2.92DOI Listing

Publication Analysis

Top Keywords

dose distributions
24
dose
12
reproducibility dose
12
stereotactic radiosurgery
8
treatment planning
8
dta values
8
dose area
8
distributions
6
isodose
5
[validation analysis
4

Similar Publications

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.

View Article and Find Full Text PDF

Hexafluoropropylene Oxide Trimer Acid Is an Unsafe Substitute to Perfluorooctanoic Acid Due to Its Remarkable Liver Accumulation in Mice Disclosed by Comprehensive Toxicokinetic Models.

Environ Sci Technol

January 2025

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.

Hexafluoropropylene oxide trimer acid (HFPO-TA, CF(CFOCF(CF))COOH) is widely used as an alternative to perfluorooctanoic acid (PFOA), but whether it is a safe alternative requires further evaluation. In this study, male mice were exposed to three dosages (0.56, 2.

View Article and Find Full Text PDF

The treatment regimen for [Lu]Lu-prostate-specific membrane antigen (PSMA) 617 therapy follows that of chemotherapy: 6 administrations of a fixed activity, each separated by 6 wk. Mathematic modeling can be used to test the hypothesis that the current treatment regimen for a radiopharmaceutical modality is suboptimal. A mathematic model was developed to describe tumor growth during [Lu]Lu-PSMA therapy.

View Article and Find Full Text PDF

The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!