A range of hexadentate 3-hydroxypyridin-4-ones have been synthesized. These compounds were found to possess a high affinity for iron(III), with logK1 values of about 34 and pFe values over 30. Antimicrobial assays indicated that they can inhibit the growth of three clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) and three clinical isolates of Pseudomonas, suggesting that hexadentate 3-hydroxypyridin-4-ones have potential application in the treatment of wound infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2015.02.050DOI Listing

Publication Analysis

Top Keywords

hexadentate 3-hydroxypyridin-4-ones
12
methicillin resistant
8
resistant staphylococcus
8
staphylococcus aureus
8
three clinical
8
clinical isolates
8
3-hydroxypyridin-4-ones high
4
high ironiii
4
ironiii affinity
4
affinity design
4

Similar Publications

A range of hexadentate 3-hydroxypyridin-4-ones have been synthesized. These compounds were found to possess a high affinity for iron(III), with logK1 values of about 34 and pFe values over 30. Antimicrobial assays indicated that they can inhibit the growth of three clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) and three clinical isolates of Pseudomonas, suggesting that hexadentate 3-hydroxypyridin-4-ones have potential application in the treatment of wound infections.

View Article and Find Full Text PDF

A range of hexadentate 3-hydroxypyridin-4-ones (HPOs) with high affinity for iron(III) has been synthesized. The log stability constants of two HPO-iron complexes (logK1 ) were determined to be over 34, and pFe values of the two HPOs were determined to be over 31. Antimicrobial assay indicated that they are able to markedly inhibit the growth of both Gram-positive and Gram-negative bacteria.

View Article and Find Full Text PDF

Novel 3-hydroxypyridin-4-one containing tridentate ligands were synthesised and their physicochemical properties characterised, including ionisation constants and stoichiometric titration with Fe(III). There is an urgent demand for orally active iron chelators with potential for the treatment of thalassaemia. In principle, tridentate ligands are likely to be more kinetically stable than bidentate molecules, but to date no satisfactory molecules have been identified.

View Article and Find Full Text PDF

The interaction of hydroxypyridinones with human serum transferrin and ovotransferrin has been studied by analyzing the distribution of iron between the chelator and the proteins as a function of both ligand concentration and transferrin saturation. The kinetics of iron removal by 3-hydroxypyridin-4-ones from both transferrins is slow; in ovotransferrin it appears to be monophasic, in contrast to that observed for serum transferrin. After 24 hours incubation at a 40:1 chelator:protein molar ratio, the percentage of iron removed from Fe(III)-ovotransferrin is 50%-60%, and is somewhat higher in the case of serum transferrin, in line with the respective affinity constants for the metal.

View Article and Find Full Text PDF

The ability of 3-hydroxypyridin-4-ones (CP), a family of bidentate orally effective iron chelators, to remove iron and to prevent iron-induced lipid peroxidation was studied in beating rat myocardial cells in culture. The iron (III) binding constant (log beta 3) of all CP compounds is 36, but their lipophilicity may be modified by altering the length of the R2 substituent on the ring nitrogen. There was a direct relation between lipid solubility and chelating efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!