The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains Hn (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4913734 | DOI Listing |
Faraday Discuss
November 2024
Department of Chemistry, Virginia Tech, Blacksburg, VA 24060, USA.
The task of computing wavefunctions that are accurate, yet simple enough mathematical objects to use for reasoning, has long been a challenge in quantum chemistry. The difficulty in drawing physical conclusions from a wavefunction is often related to the generally large number of configurations with similar weights. In Tensor Product Selected Configuration Interaction (TPSCI), we use a locally correlated tensor product state basis, which has the effect of concentrating the weight of a state onto a smaller number of physically interpretable degrees of freedom.
View Article and Find Full Text PDFFront Plant Sci
January 2023
Centre for Biometrics and Data Science for Sustainable Primary Industries, National Institute for Applied Statistics Research Australia, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, Australia.
Plant breeding field trials are typically arranged as a row by column rectangular lattice. They have been widely analysed using linear mixed models in which low order autoregressive integrated moving average (ARIMA) time series models, and the subclass of separable lattice processes, are used to account for two-dimensional spatial dependence between the plot errors. A separable first order autoregressive model has been shown to be particularly useful in the analysis of plant breeding trials.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2022
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States.
Size extensivity, defined as the correct scaling of energy with system size, is a desirable property for any many-body method. Traditional configuration interaction (CI) methods are not size extensive, hence the error increases as the system gets larger. Coupled electron pair approximation (CEPA) methods can be constructed as simple extensions of a truncated CI that ensures size extensivity.
View Article and Find Full Text PDFJ Transl Med
January 2022
Imaging-Based Functional Brain Diagnostics and Therapy, Department of Neurology, High Field Magnetic Resonance Centre, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
Background: With the high spatial resolution and the potential to reach deep brain structures, ultrasound-based brain stimulation techniques offer new opportunities to non-invasively treat neurological and psychiatric disorders. However, little is known about long-term effects of ultrasound-based brain stimulation. Applying a longitudinal design, we comprehensively investigated neuromodulation induced by ultrasound brain stimulation to provide first sham-controlled evidence of long-term effects on the human brain and behavior.
View Article and Find Full Text PDFJ Chem Phys
August 2021
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, USA.
The many-body expansion (MBE) is an efficient tool that has a long history of use for calculating interaction energies, binding energies, lattice energies, and so on. In the past, applications of MBE to correlation energy have been unfeasible for large systems, but recent improvements to computing resources have sparked renewed interest in capturing the correlation energy using the generalized nth order Bethe-Goldstone equation. In this work, we extend this approach, originally proposed for a Slater determinant, to a tensor product state (TPS) based wavefunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!