Water quantity and quality assessment on a tertiary treatment wetland in a tropical climate.

Water Sci Technol

College of Science, Technology and Engineering, James Cook University, Building 15, 4811 Townsville, QLD, Australia.

Published: October 2015

This study aimed to assess the quantity and quality of water in a surface flow constructed wetland in Australia's far north Queensland. Owing to tropical climate in the region, the wetland provided dual functions: retention of a treated wastewater for zero discharge during the dry season and tertiary treatment prior to discharge during the wet season. Rainfall data, permeability of wetland soil, evaporation, inflow and outflow were analysed in a water balance analysis; the results showed that based on a 72-year-average rainfall pattern, daily wastewater inflow of 85 m(3)/d is the maximum this wetland can cope with without breaching its discharge certificate. In water quality analysis, the K-C* model was used to predict changes of biochemical oxygen demand (BOD, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and faecal coliforms (FC) in the wetland. Model predictions were compared with field sampling results. It was found that the wetland was effective in removing FC (>99.9%), TN (70.7%) and TP (68.2%), for which the predictions by the K-C* model were consistent with field testing results. However, significant disparities between the predictions and testing results were found for BOD and SS. A revised K-C* equation was proposed to account for the internal generation of organics in constructed wetlands with a long retention time.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2014.479DOI Listing

Publication Analysis

Top Keywords

quantity quality
8
tertiary treatment
8
tropical climate
8
k-c* model
8
wetland
7
water
4
water quantity
4
quality assessment
4
assessment tertiary
4
treatment wetland
4

Similar Publications

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Introduction: The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored.

View Article and Find Full Text PDF

Background: Cancellous bone mechanical properties are directly linked to structural integrity, which is a result of bone quantity, the quality of its bone matrix, and its microarchitecture. Several studies highlighted the bone behavior under specific loads, contributing to understanding risk factors and developing more effective therapeutic strategies. The anatomy and stability of iliac bone fractures, providing insight into pelvic trauma management.

View Article and Find Full Text PDF

Background: Chemotherapy-induced peripheral neuropathy (CIPN) significantly impairs the quality of life of patients undergoing chemotherapy and diminishes their adherence to the treatment regimen. Existing studies suggest that compression therapy may prevent the onset of CIPN, yet the specific efficacy remains to be conclusively determined.

Methods: We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing compression therapy with inactive comparators in patients scheduled for chemotherapy.

View Article and Find Full Text PDF

The impact of gradient variable temperature fermentation on the quality of cigar tobacco leaves.

Front Microbiol

December 2024

Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China.

Introduction: In order to enhance the quality of cigar tobacco leaves (CTLs), a gradient variable temperature fermentation approach was employed.

Methods: The temperature gradient demonstrated a gradual increase from low temperature (35 ± 2°C) to moderate temperature (45 ± 2°C), and then to high temperature (55 ± 2°C). Each temperature gradient underwent a 10-day fermentation process, resulting in a total duration of 30 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!