5-Hydroxymethylcytosine (5-hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, 5-hmC was functionally linked to learning and cognition and these studies revealed an accumulation of 5-hmC in the prefrontal cortex of mice undergoing fear extinction. These studies led us to hypothesize a role for 5-hmC in response to stress. To test this hypothesis, we combined immunohistochemistry, tandem mass spectrometry, and tet-assisted sodium bisulfite sequencing (TAB-seq) analyses on tissue and DNA from the hippocampus of 7-week old male mice exposed to a single 30-min restraint stress. After first identifying that the broad neuronal distribution of 5-hmC is not disrupted by acute stress, we used TAB-seq to find a stress-induced increase of 5-hmC in the 3'UTR of the glucocorticoid receptor gene (Nr3c1). Nr3c1 has a well-defined role in the stress pathway and these data suggest that 5-hmC contributes to these processes. Together, these data indicate that a deeper investigation of stress-related 5-hmC levels may reveal an environmental impact on this newly discovered epigenetic mark in the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398338 | PMC |
http://dx.doi.org/10.1016/j.bbr.2015.03.002 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
December 2024
College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
Ten-eleven translocation 1 (TET1) protein is an alpha-ketoglutaric acid (α-KG) and Fe-dependent dioxygenase. It plays a role in the active demethylation of DNA by hydroxylation of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC). Ten-eleven translocation 1 (TET1) protein is involved in maintaining genome methylation homeostasis and epigenetic regulation.
View Article and Find Full Text PDFEpigenet Rep
November 2024
Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
DNA methylation, an epigenetic mark, has become a common outcome in epidemiological studies with the aid of affordable and reliable technologies. Yet the most widespread technique used to assess methylation, bisulfite conversion, does not allow for the differentiation of regular DNA methylation (5-mC) and other cytosine modifications, like that of hydroxymethylation (5-hmC). As both 5-mC and 5-hmC have distinct biological roles, sometimes with opposing effects, it is crucial to understand the difference between these marks.
View Article and Find Full Text PDFNat Commun
November 2024
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
J Cell Physiol
October 2024
Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
The micronutrient vitamin C is essential for the maintenance of skeletal muscle health and homeostasis. The pro-myogenic effects of vitamin C have long been attributed to its role as a general antioxidant agent, as well as its role in collagen matrix synthesis and carnitine biosynthesis. Here, we show that vitamin C also functions as an epigenetic compound, facilitating chromatin landscape transitions during myogenesis through its activity as an enzymatic cofactor for histone H3 and DNA demethylation.
View Article and Find Full Text PDFNeurobiol Dis
October 2024
Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America. Electronic address:
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!