The mechanisms by which Chlamydia pneumoniae infection promote vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis have not yet been fully clarified. Matrix metalloproteinases (MMPs) have important roles in VSMC migration. However, it is still unknown whether MMPs are involved in C. pneumoniae infection-induced VSMC migration. In addition, whether berberine can exert its inhibitory effects on the infection-induced VSMC migration also remains unclear. Accordingly, we investigated the effects of berberine on C. pneumoniae infection-induced VSMC migration and explored the possible mechanisms involved in this process. Herein, we found that C. pneumoniae infection could induce VSMC migration through Matrigel-coated membrane (P<0.05), which can be significantly inhibited by the broad-spectrum MMP inhibitor GM6001 (P<0.05). Our results also showed that C. pneumoniae infection upregulated both mRNA and protein expressions of MMP3 and MMP9 (P<0.05). The specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002 significantly suppressed the increases in MMP3 and MMP9 protein expressions induced by C. pneumoniae infection (P<0.05). Further experiments showed that berberine significantly attenuated C. pneumoniae infection-induced VSMC migration (P<0.05). Moreover, berberine suppressed the protein expressions of MMP3 and MMP9 caused by C. pneumoniae infection in a dose-dependent manner (P<0.05). C. pneumoniae infection-induced increase in the phosphorylation level of Akt at Ser473 was inhibited by the treatment with berberine (P<0.05). Taken together, our data suggest that berberine inhibits C. pneumoniae infection-induced VSMC migration by downregulating the expressions of MMP3 and MMP9 via PI3K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2015.02.039 | DOI Listing |
Chin Med
January 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju‑gun, 55365, Republic of Korea.
Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.
Cytojournal
November 2024
The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:
NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA.
Arterial stiffness is a key contributor to cardiovascular diseases, including atherosclerosis, restenosis, and coronary artery disease, it has been characterized to be associated with the aberrant migration of vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms driving VSMC migration in stiff environments remain incompletely understood. We recently demonstrated that survivin, a member of the inhibitor of apoptosis protein family, is highly expressed in both mouse and human VSMCs cultured on stiff polyacrylamide hydrogels, where it modulates stiffness-mediated cell cycle progression and proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!