In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca(2+)-OH(-)-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (<0.5 ppm). Influx of atmospheric carbon dioxide (CO2) affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads) and Firmicutes (19.1% of total reads). Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep's source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333863 | PMC |
http://dx.doi.org/10.3389/fmicb.2015.00044 | DOI Listing |
Science
August 2024
Department of Communication, University of North Dakota, Grand Forks, ND, USA.
The upper mantle is critical for our understanding of terrestrial magmatism, crust formation, and element cycling between Earth's solid interior, hydrosphere, atmosphere, and biosphere. Mantle composition and evolution have been primarily inferred by surface sampling and indirect methods. We recovered a long (1268-meter) section of serpentinized abyssal mantle peridotite interleaved with thin gabbroic intrusions.
View Article and Find Full Text PDFJ Environ Manage
August 2024
Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan. Electronic address:
Heavy metals (HMs) contained terrestrial ecosystems are often significantly display the antibiotic resistome in the pristine area due to increasing pressure from anthropogenic activity, is complex and emerging research interest. This study investigated that impact of chromium (Cr), nickel (Ni), cobalt (Co) concentrations in serpentine soil on the induction of antibiotic resistance genes and antimicrobial resistance within the native bacterial community as well as demonstrated their metabolic fingerprint. The full-length 16S-rRNA amplicon sequencing observed an increased abundance of Firmicutes, Actinobacteriota, and Acidobacteriota in serpentine soil.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.
Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO and were chemolithoautotrophs that obtained their energy and electrons from H. The acetyl-CoA pathway of CO fixation is central to that view because of its antiquity: Among known CO fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H.
View Article and Find Full Text PDFFront Microbiol
November 2023
Department of Geological Sciences, University of Colorado, Boulder, CO, United States.
The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites).
View Article and Find Full Text PDFFront Microbiol
October 2023
Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany.
Serpentinization in hydrothermal vents is central to some autotrophic theories for the origin of life because it generates compartments, reductants, catalysts and gradients. During the process of serpentinization, water circulates through hydrothermal systems in the crust where it oxidizes Fe (II) in ultramafic minerals to generate Fe (III) minerals and H. Molecular hydrogen can, in turn, serve as a freely diffusible source of electrons for the reduction of CO to organic compounds, provided that suitable catalysts are present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!