Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aquaporins are transmembrane proteins, ubiquitous in the human body. Inserted into the cell membranes, they play an important role in filtration, absorption and secretion of fluids. However, the excellent compromise between selectivity and permeability of aquaporins remains elusive. In this review, we focus on the hourglass shape of aquaporins, and we investigate its influence on water permeability, using numerical calculations and a simple theoretical model. We show that there is an optimum opening angle that maximizes the hydrodynamic permeability, and whose value is close to the angles observed in aquaporins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1051/medsci/20153102014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!