ERBB4 polymorphism and family history of psychiatric disorders on age-related cortical changes in healthy children.

Brain Imaging Behav

Department of Medicine, John A. Burns School of Medicine, University of Hawaii and The Queen's Medical Center, 1356 Lusitana Street, UH Tower, Room 716, Honolulu, HI, 96813, USA,

Published: March 2015

Genetic variations in ERBB4 were associated with increased susceptibility for schizophrenia (SCZ) and bipolar disorders (BPD). Structural imaging studies showed cortical abnormalities in adolescents and adults with SCZ or BPD. However, less is known about subclinical cortical changes or the influence of ERBB4 on cortical development. 971 healthy children (ages 3-20 years old; 462 girls and 509 boys) were genotyped for the ERBB4-rs7598440 variants, had structural MRI, and cognitive evaluation (NIH Toolbox ®). We investigated the effects of ERBB4 variants and family history of SCZ and/or BPD (FH) on cortical measures and cognitive performances across ages 3-20 years using a general additive model. Variations in ERBB4 and FH impact differentially the age-related cortical changes in regions often affected by SCZ and BPD. The ERBB4-TT-risk genotype children with no FH had subtle cortical changes across the age span, primarily located in the left temporal lobe and superior parietal cortex. In contrast, the TT-risk genotype children with FH had more pronounced age-related changes, mainly in the frontal lobes compared to the non-risk genotype children. Interactive effects of age, FH and ERBB4 variations were also found on episodic memory and working memory, which are often impaired in SCZ and BPD. Healthy children carrying the risk-genotype in ERBB4 and/or with FH had cortical measures resembling those reported in SCZ or BPD. These subclinical cortical variations may provide early indicators for increased risk of psychiatric disorders and improve our understanding of the effect of the NRG1-ERBB4 pathway on brain development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383396PMC
http://dx.doi.org/10.1007/s11682-015-9363-yDOI Listing

Publication Analysis

Top Keywords

cortical changes
16
scz bpd
16
healthy children
12
genotype children
12
cortical
9
family history
8
psychiatric disorders
8
age-related cortical
8
variations erbb4
8
bpd subclinical
8

Similar Publications

Repetitive transcranial magnetic stimulation for fibromyalgia: are we there yet?

Pain Rep

February 2025

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.

Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.

View Article and Find Full Text PDF

Background: Aneurysmal bone cysts (ABCs) are benign, blood-filled neoplasms causing bone destruction, often requiring resection. However, challenges arise, especially at the cranio-cervical junction, where proximity to critical structures limits removal. Non-surgical options include selective arterial embolization (SAE) as main treatment, while Denosumab and centrifugated bone marrow emerge as experimental alternatives.

View Article and Find Full Text PDF

Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.

View Article and Find Full Text PDF

Objectives: Most human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates.

View Article and Find Full Text PDF

White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!