The cytoplasmic free Ca(2+) could play an important role for salt tolerance in rice root (Oryza sativa L.). Here, we compared the expression profiles of two putative developmentally regulated plasma membrane polypeptides (DREPP1 and DREPP2) in rice roots of salt-tolerant cv. Pokkali and salt-sensitive cv. IR29. The messenger RNA (mRNA) for OsDREPP1 could be detected in all parts of root and did not change upon salt stress, whereas the mRNA for OsDREPP2 was detected only in root tips. The transcript level of OsDREPP2 first disappeared upon salt stress, then recovered in Pokkali, but not recovered in IR29. The gene-encoding OsDREPP2 was cloned from cv. Pokkali and expressed in Escherichia coli, and its biochemical properties were studied. It was found that OsDREPP2 is a Ca(2+)-binding protein and binds also to calmodulin (CaM) as well as microtubules. The mutation of Trp4 and Phe16 in OsDREPP2 to Ala decreased the binding of DREPP2 to Ca(2+)/CaM complex, indicating the N-terminal basic domain is involved for the binding. The binding of OsDREPP2 to microtubules was inhibited by Ca(2+)/CaM complex, while the binding of double-mutant OsDREPP2 protein to microtubules was not inhibited by Ca(2+)/CaM complex. We propose that CaM inhibits the binding of DREPP2 to cortical microtubules, causes the inhibition of microtubule depolymerization, and enhances the cell elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-015-0781-xDOI Listing

Publication Analysis

Top Keywords

ca2+/cam complex
16
developmentally regulated
8
regulated plasma
8
plasma membrane
8
drepp2 rice
8
rice root
8
salt stress
8
binding drepp2
8
microtubules inhibited
8
inhibited ca2+/cam
8

Similar Publications

The impact of ciliary length on the mechanical response of osteocytes to fluid shear stress.

Nitric Oxide

December 2024

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:

Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.

View Article and Find Full Text PDF

Calmodulin enhances mTORC1 signaling by preventing TSC2-Rheb binding.

J Biol Chem

December 2024

Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Japan. Electronic address:

The mechanistic target of rapamycin complex 1 (mTORC1) functions as a master regulator of cell growth and proliferation. We previously demonstrated that intracellular calcium ion (Ca) concentration modulates the mTORC1 pathway via binding of the Ca sensor protein calmodulin (CaM) to tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTORC1. However, the precise molecular mechanism by which Ca/CaM modulates mTORC1 activity remains unclear.

View Article and Find Full Text PDF

Calmodulin binding is required for calcium mediated TRPA1 desensitization.

bioRxiv

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.

Calcium (Ca) ions affect nearly all aspects of biology. Excessive Ca entry is cytotoxic and Ca-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca regulation with initial channel potentiation followed by rapid desensitization.

View Article and Find Full Text PDF

Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure.

Nat Commun

December 2024

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction, multiple organ failures, and high mortality. Despite decades of research, established ALF has minimal therapeutic options. Here, we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%, even administered 24 hours after ALF establishment.

View Article and Find Full Text PDF

Dynamics of AKAP/Calmodulin complex is largely driven by ionic occupancy state.

J Mol Graph Model

January 2025

Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India. Electronic address:

Article Synopsis
  • AKAP79/150 is a scaffold protein in neurons that regulates phosphorylation through its interaction with calcium-bound Calmodulin (CaM).
  • A study in 2017 identified the CaM binding site on AKAP79/150 using peptide cross-linking and mass spectrometry, along with determining a complex structure via X-ray crystallography.
  • In a recent molecular dynamics study, the researchers found that the dynamics of the CaM-AKAP79/150 complex are influenced by ionic occupancy, with the Ca state showing additional stabilization through hydrogen bonds, suggesting the need for further structural studies like NMR to observe different conformational states.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!