A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach.

Stem Cells Transl Med

Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China; Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Key Laboratory of Pediatric Hematology/Oncology of Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China

Published: April 2015

Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10-50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367508PMC
http://dx.doi.org/10.5966/sctm.2014-0214DOI Listing

Publication Analysis

Top Keywords

ips cells
16
ips cell
16
clinically compliant
12
cells
10
induced pluripotent
8
pluripotent stem
8
adult blood
8
cells feeder-free
8
feeder-free xeno-free
8
ips
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!