In-vitro activity of avermectins against Mycobacterium ulcerans.

PLoS Negl Trop Dis

Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.

Published: March 2015

Mycobacterium ulcerans causes Buruli ulcer (BU), a debilitating infection of subcutaneous tissue. There is a WHO-recommended antibiotic treatment requiring an 8-week course of streptomycin and rifampicin. This regime has revolutionized the treatment of BU but there are problems that include reliance on daily streptomycin injections and side effects such as ototoxicity. Trials of all-oral treatments for BU show promise but additional drug combinations that make BU treatment safer and shorter would be welcome. Following on from reports that avermectins have activity against Mycobacterium tuberculosis, we tested the in-vitro efficacy of ivermectin and moxidectin on M. ulcerans. We observed minimum inhibitory concentrations of 4-8 μg/ml and time-kill assays using wild type and bioluminescent M. ulcerans showed a significant dose-dependent reduction in M. ulcerans viability over 8-weeks. A synergistic killing-effect with rifampicin was also observed. Avermectins are well tolerated, widely available and inexpensive. Based on our in vitro findings we suggest that avermectins should be further evaluated for the treatment of BU.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351077PMC
http://dx.doi.org/10.1371/journal.pntd.0003549DOI Listing

Publication Analysis

Top Keywords

mycobacterium ulcerans
8
ulcerans
5
in-vitro activity
4
avermectins
4
activity avermectins
4
avermectins mycobacterium
4
ulcerans mycobacterium
4
ulcerans buruli
4
buruli ulcer
4
ulcer debilitating
4

Similar Publications

Buruli ulcer (BU) a neglected disease induced by the bacterium Mycobacterium ulcerans, predominantly impacts tropical and subtropical areas with its pathophysiology ascribed to the Mycolactone protein. Current antibiotics frequently prove insufficient to manage advanced or chronic ulcers and the rise of drug resistance presents a considerable challenge. This work aims to address these challenges by employing computational methods to identify therapeutic candidates from organic compounds, which may be developed into more effective therapies for Buruli ulcer.

View Article and Find Full Text PDF

Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.

View Article and Find Full Text PDF

Buruli ulcer in Australia: Evidence for a new endemic focus at Batemans Bay, New South Wales.

PLoS Negl Trop Dis

December 2024

Department of Infectious Diseases and Microbiology, The Canberra Hospital, Australian Capital Territory, Australia.

We describe two locally acquired cases of Mycobacterium ulcerans infection (Buruli ulcer) in the town of Batemans Bay on the east coast of New South Wales (NSW), Australia, 150 km north of Eden, the only other place in NSW where Buruli ulcer has likely been locally acquired. Genomic analysis showed that the bacterial isolates from the cases were identical but belonged to a phylogenetically distinct M. ulcerans clade that was most closely related to the isolate from the earlier case in Eden to the south.

View Article and Find Full Text PDF

Background: Buruli ulcer (BU) is an infectious skin disease caused by . It primarily affects disadvantaged rural populations and mainly impacts children who are chronically malnourished being especially vulnerable. In Côte d'Ivoire, the estimated prevalence of BU in children is 30 %.

View Article and Find Full Text PDF

Mycobacteria is a diverse genus that includes both innocuous environmental species and serious pathogens like Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium ulcerans, the causative agents of tuberculosis, leprosy, and Buruli ulcer, respectively. This study focuses on Mycobacterium marinum, a closely related species known for its larger genome and ability to infect ectothermic species and cooler human extremities. Utilizing whole-genome sequencing, we conducted a comprehensive pan-genome analysis of 100 M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!