Implementation of a neural network for multispectral luminescence imaging of lake pigment paints.

Appl Spectrosc

Musée de la musique, Equipe Conservation Recherche, Cité de la musique, 221 avenue Jean Jaurè s, 75019 Paris, France.

Published: April 2015

Luminescence multispectral imaging is a developing and promising technique in the fields of conservation science and cultural heritage studies. In this article, we present a new methodology for recording the spatially resolved luminescence properties of objects. This methodology relies on the development of a lab-made multispectral camera setup optimized to collect low-yield luminescence images. In addition to a classic data preprocessing procedure to reduce noise on the data, we present an innovative method, based on a neural network algorithm, that allows us to obtain radiometrically calibrated luminescence spectra with increased spectral resolution from the low-spectral resolution acquisitions. After preliminary corrections, a neural network is trained using the 15-band multispectral luminescence acquisitions and corresponding spot spectroscopy luminescence data. This neural network is then used to retrieve a megapixel multispectral cube between 460 and 710 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. The resulting data are independent from the detection chain of the imaging system (filter transmittance, spectral sensitivity of the lens and optics, etc.). As a result, the image cube provides radiometrically calibrated emission spectra with increased spectral resolution. For each pixel, we can thus retrieve a spectrum comparable to those obtained with conventional luminescence spectroscopy. We apply this method to a panel of lake pigment paints and discuss the pertinence and perspectives of this new approach.

Download full-text PDF

Source
http://dx.doi.org/10.1366/14-07554DOI Listing

Publication Analysis

Top Keywords

neural network
16
luminescence
8
multispectral luminescence
8
lake pigment
8
pigment paints
8
radiometrically calibrated
8
spectra increased
8
increased spectral
8
spectral resolution
8
multispectral
6

Similar Publications

Background: Deutetrabenazine is a widely used drug for the treatment of tardive dyskinesia (TD), and post-marketing testing is important. There is a lack of real-world, large-sample safety studies of deutetrabenazine. In this study, a pharmacovigilance analysis of deutetrabenazine was performed based on the FDA Adverse Event Reporting System (FAERS) database to evaluate its relevant safety signals for clinical reference.

View Article and Find Full Text PDF

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

Current neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.

View Article and Find Full Text PDF

Giant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!