Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells.

Neuron

Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium; WELBIO, Université Libre de Bruxelles (ULB), Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium. Electronic address:

Published: March 2015

Pluripotent stem-cell-derived neurons constitute an attractive source for replacement therapies, but their utility remains unclear for cortical diseases. Here, we show that neurons of visual cortex identity, differentiated in vitro from mouse embryonic stem cells (ESCs), can be transplanted successfully following a lesion of the adult mouse visual cortex. Reestablishment of the damaged pathways included long-range and reciprocal axonal projections and synaptic connections with targets of the damaged cortex. Electrophysiological recordings revealed that some grafted neurons were functional and responsive to visual stimuli. No significant integration was observed following grafting of the same neurons in motor cortex, or transplantation of embryonic motor cortex in visual cortex, indicating that successful transplantation required a match in the areal identity of grafted and lesioned neurons. These findings demonstrate that transplantation of mouse ESC-derived neurons of appropriate cortical areal identity can contribute to the reconstruction of an adult damaged cortical circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2015.02.001DOI Listing

Publication Analysis

Top Keywords

visual cortex
12
reestablishment damaged
8
mouse embryonic
8
embryonic stem
8
stem cells
8
motor cortex
8
areal identity
8
cortex
7
neurons
7
area-specific reestablishment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!