Trichoderma asperellum, a traditional bio-control species, was demonstrated to be an excellent candidate for lignocellulose degradation in this work. Comparing to the representatively industrial strain of Trichoderma reeseiQM6a, T. asperellum T-1 showed more robust growth, stronger spore production, faster secretion of lignocellulose-decomposing enzymes and better pH tolerance. The reducing sugar released by strain T-1 on the second day of fermentation was 87% higher than that of strain QM6a, although the maximum reducing sugar yield and the cellulase production persistence of the strain T-1 were lower. Our experiment found that the cellulase secretion was strongly inhibited by glucose, suggesting the existence of carbon source repression pathway in T. asperellum T-1. The inhibiting effect was enhanced with an increase in glucose concentration and was closely related to mycelium growth. SDS-PAGE and secondary mass-spectrum identification confirmed that the expression of endo-1,4-β-xylanase I in T. asperellum T-1 was down-regulated when glucose was added. The factor Cre1, which plays an important role in the down-regulation of the endo-1,4-β-xylanase I gene, was investigated by bioinformatics methods. The protein structure of Cre1, analyzed using multiple protein sequence alignment, indicates the existence of the Zn-fingers domain. Then, the binding sites of Cre1 on the endo-1,4-β-xylanase I gene promoter were further elucidated. This study is the first report about Cre1-mediated carbon repression in the bio-control strain T. asperellum T-1. All of the above results provided good references for better understanding T. asperellum T-1 and improving its application for lignocellulose degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351060PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119237PLOS

Publication Analysis

Top Keywords

asperellum t-1
24
cellulase secretion
8
cre1-mediated carbon
8
carbon source
8
source repression
8
strain trichoderma
8
trichoderma asperellum
8
t-1
8
lignocellulose degradation
8
reducing sugar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!