Due in part to the increasing incidence of obesity in developed nations, recent research aims to elucidate neural circuits that motivate humans to overeat. Earlier research has described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by activating neuronal populations in the lateral hypothalamus (LH). However, more recent research suggests that the LH may in turn communicate with the AcbSh, both directly and indirectly, to re-tune the motivation to consume foods with homeostatic and food-related sensory signals. Here, we discuss the functional and anatomical evidence for an LH to AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical "relay" regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular thalamus, using a variety of neurotransmitters. This review aims to summarize studies on these topics and outline a model by which LH circuits processing energy balance can modulate AcbSh neural activity to regulate feeding behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327307 | PMC |
http://dx.doi.org/10.3389/fnsys.2015.00008 | DOI Listing |
Transl Psychiatry
September 2024
Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy.
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh).
View Article and Find Full Text PDFPharmacol Biochem Behav
October 2024
Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Psychology, Washington State University, Pullman, WA, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Neuroscience Institute, USF Health, University of South Florida, Tampa, FL, USA. Electronic address:
Alcohol use disorder (AUD) is a chronic relapsing disease that is deleterious at individual, familial, and societal levels. Although AUD is one of the highest preventable causes of death in the USA, therapies for the treatment of AUD are not sufficient given the heterogeneity of the disorder and the limited number of approved medications. To provide better pharmacological strategies, it is important to understand the neurological underpinnings of AUD.
View Article and Find Full Text PDFThe consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh).
View Article and Find Full Text PDFBrain Behav
May 2024
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Background: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear.
View Article and Find Full Text PDFJ Neurochem
July 2024
Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India.
The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!