Soil is composed of different types of particles which are either natural or of anthropogenic origin. Anthropogenic particles are often related to the presence of heavy metals and thus provide information on soil quality. Magnetic parameters can detect the presence of such particles and may be used as a proxy for environmental pollution. This study explores the relationships between magnetic particles and the nematofauna of agricultural soils. Magnetic, pedological, microscopy and nematological analyses were conducted in soils collected from major regions of potato production in Portugal. The magnetic characterisation of soils identified regions with magnetic particles with possible anthropogenic origin. Microscopy analysis revealed the presence of spherical particles dominantly composed of Fe, O and C. A positive and significant relationship was found between saturation isothermal remanent magnetisation (SIRM) and mass-specific susceptibility (χ), confirming the importance the ferrimagnetic fraction to magnetic properties. The nematode communities were composed of nematodes belonging to four trophic groups (bacterial feeding, plant feeders, fungal feeders and omnivores/predators). The relationships between magnetic parameters and the nematodes showed that (1) S-25 has a linear correlation with number of nematodes per kilogram of soil and with plant feeders' trophic group and (2) SIRM correlates with the bacterial feeders trophic group. This study reveals that magnetic proxies may provide means for detecting regions with higher levels of pollution, possibly related to heavy metals. Due to the large background variability found in magnetic parameters, the sampling spacial mesh should to be further refined and the input of magnetic minerals needs to be locally calibrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-015-4373-1 | DOI Listing |
Biomed Phys Eng Express
January 2025
Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, St.Gallen, 9006, SWITZERLAND.
Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.
View Article and Find Full Text PDFJAMA Neurol
January 2025
Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore.
Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.
Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).
Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.
J Mol Model
January 2025
Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.
Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361005, China.
A two-degree-of-freedom bistable energy harvester with a spring-magnet oscillator designed for ultra-low frequency vibration energy harvesting is presented in this paper. It combines magnetic plucking frequency upconversion and a variable potential function to achieve a high-efficiency response while also being suitably installed for applications with spatial limitations. A lumped parameter model of the piezoelectric energy harvester and the magnetic dipoles is applied to develop the theoretical model for the system.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Ural Federal University, Ekaterinburg, Russia.
This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!