Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The sulfidation of copper nanoparticles deposited onto ZnO surface by the photocatalytic reduction of Cu(II) results in the formation of ZnO/CuxS films that can be used as efficient counter electrodes in solar cells based on sulfide/polysulfide electrolytes. The films are formed by the spherical copper sulfide nano/micro-aggregates of tabulate CuxS nanoparticles with x = 1.3-1.4. A model cell with a FTO/ZnO/CdS photoanode produced by SILAR and FTO/ZnO/CuxS films as counter-electrode showed a light conversion efficiency, η = 1.73%, which is 25% higher than a similar cell where copper sulfide was deposited onto ZnO in "dark" conditions. Varying the conditions of the photocatalytic deposition of the starting copper nanoparticles slightly affects the electrocatalytic properties of the final FTO/ZnO/CuxS heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4pp00314d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!