Acute myeloid leukemia (AML) is a common disorder in the elderly. Although remarkable progress has been made over recent decades, the outcome remains poor. Thus, the development of a more effective method to overcome this problem is necessary. In this study, we aimed to investigate the synergistic cytotoxic effect of low-dose arsenic trioxide (As2O3) combined with aclacinomycin A (ACM) on the human AML cell lines KG-1a and HL-60, and to clarify the underlying mechanism. Results showed that As2O3 combined with ACM exerted a synergistic cytotoxic effect by activation of the apoptosis pathway. Additionally, we found that the combination treatment decreased Bcl-2, c-IAP and XIAP expression but increased SMAC and caspase-3 expression more significantly than the single drug treatments. Furthermore, combination index (CI) values were < 1 in all matched combination groups. Additional evaluation of As2O3 combined with ACM as a potential therapeutic benefit for AML seems warranted.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10428194.2015.1011155DOI Listing

Publication Analysis

Top Keywords

as2o3 combined
12
low-dose arsenic
8
arsenic trioxide
8
combined aclacinomycin
8
cell lines
8
synergistic cytotoxic
8
combined acm
8
combined
4
trioxide combined
4
aclacinomycin synergistically
4

Similar Publications

Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.

View Article and Find Full Text PDF

Ovarian clear cell carcinoma (OCCC), particularly advanced or recurrent settings, is generally resistant to platinum-based chemotherapy, warranting novel therapeutic strategies. Mutations in the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin kinase (PI3K/AKT/mTOR) pathway are frequently reported in OCCC. Therefore, we hypothesized that the PI3K/mTOR dual inhibitor, GSK458, and arsenic trioxide may exert synergistic anti-tumor effects on OCCC.

View Article and Find Full Text PDF

Harnessing Arsenic Derivatives and Natural Agents for Enhanced Glioblastoma Therapy.

Cells

December 2024

Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan.

Glioblastoma (GBM) is the most common and lethal intracranial tumor in adults. Despite advances in the understanding of the molecular events responsible for disease development and progression, survival rates and mortality statistics for GBM patients have been virtually unchanged for decades and chemotherapeutic drugs used to treat GBM are limited. Arsenic derivatives, known as highly effective anticancer agents for leukemia therapy, has been demonstrated to exhibit cytocidal effects toward GBM cells by inducing cell death, cell cycle arrest, inhibition of migration/invasion, and angiogenesis.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most common and prevalent subtype of lung cancer and continues to be one of the leading causes of cancer-related deaths worldwide. Despite various treatment options, a majority of NSCLC patients continue to experience disease progression and associated side effects, which are largely attributed to drug resistance, indicating the need for alternative strategies to combat this deadly disease. Among various applicable alternative approaches, repurposed drugs such as arsenic compounds have been shown to exert anticarcinogenic properties against NSCLC and possess the ability to overcome drug resistance mechanisms.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a common head and neck malignant tumour with high incidence and poor prognosis. Arsenic trioxide (ATO) has therapeutic effects on solid tumours. Microwave ablation (MWA) has unique advantages in the treatment of solid tumours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!