A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide. | LitMetric

EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide.

J Natl Cancer Inst

Pathology (MC, BL, MFB, DM, VP, FF, PLP) and Pharmacology Units (CB, MP), Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, Italy; Medical Oncology (SG), Neurosurgery (LB), Radiation Oncology (MB), and Neuroradiology Departments (RL), Spedali Civili of Brescia, University of Brescia, Italy; Neural Stem Cell Biology Unit, Division of Regenerative Medicine, Stem Cells & Gene Therapy, San Raffaele Scientific Institute, Milan (SM, RG); Pathology Unit, Department of Surgical and Morphological Sciences, University of Insubria, Italy (DF); Neurological Institute Besta, Milan, Italy (SP, GF); Herbert Irving Comprehensive Cancer Center, Department of Pathology & Cell Biology and Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY (PD); IRCCS San Camillo Hospital, Venice, Italy (MP).

Published: May 2015

Background: Lack of robust predictive biomarkers, other than MGMT promoter methylation, makes temozolomide responsiveness in newly diagnosed glioblastoma (GBM) patients difficult to predict. However, we identified patients with long-term survival (≥35 months) within a group of newly diagnosed GBM patients treated with standard or metronomic adjuvant temozolomide schedules. We thus investigated possible molecular profiles associated with longer survival following temozolomide treatment.

Methods: We investigated the association of molecular features with progression-free (PFS) and overall survival (OS). Human-derived GBM cancer stem cells (CSCs) were used to investigate in vitro molecular mechanisms associated with temozolomide responsiveness. Surgically removed recurrences allowed investigation of molecular changes occurring during therapy in vivo. Statistical analyses included one- and two-way analysis of variance, Student's t test, Cox proportional hazards, and the Kaplan-Meier method. All statistical tests were two-sided.

Results: No association was found between survival and gene classifiers associated with different molecular GBM subtypes in the standard-treated group, while in metronomic-treated patients robust association was found between EGFR amplification/overexpression and PFS and OS (OS, EGFR-high vs low: hazard ratiodeath = 0.22, 95% confidence interval = 0.09 to 0.55, P = .001). The result for OS remained statistically significant after Bonferroni correction (P interaction < .0005). Long-term survival following metronomic temozolomide was independent from MGMT and EGFRvIII status and was more pronounced in EGFR-overexpressing GBM patients with PTEN loss. In vitro findings confirmed a selective dose- and time-dependent decrease in survival of temozolomide-treated EGFR+ human-derived glioblastoma CSCs, which occurred through inhibition of NF-κB transcriptional activity. In addition, reduction in EGFR-amplified cells, along with a statistically significant decrease in NF-κB/p65 expression, were observed in specimens from recurrent metronomic-treated EGFR-overexpressing GBM patients.

Conclusions: EGFR-amplified/overexpressing glioblastomas strongly benefit from metronomic temozolomide-based therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djv041DOI Listing

Publication Analysis

Top Keywords

gbm patients
12
metronomic temozolomide
8
temozolomide responsiveness
8
newly diagnosed
8
long-term survival
8
egfr-overexpressing gbm
8
temozolomide
6
gbm
6
survival
6
patients
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!