Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development.

Circulation

Gene Expression Laboratory (L.K., A.A., I.S.-M., T.H., T.B.N., P.R., E.N., M.N.K., C.R.E., J.C.I.B.) and Integrative Genomics Core (C.B.), Salk Institute for Biological Studies, La Jolla, CA; University of California San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, Sanford Consortium for Regenerative Medicine, La Jolla (L.K., T.B.N., D.A.N., G.W.Y.); and Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain (J.M.C.).

Published: April 2015

Background: Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators with important functions in development and disease. Here, we sought to identify and functionally characterize novel lncRNAs critical for vertebrate development.

Methods And Results: By relying on human pluripotent stem cell differentiation models, we investigated lncRNAs differentially regulated at key steps during human cardiovascular development with a special focus on vascular endothelial cells. RNA sequencing led to the generation of large data sets that serve as a gene expression roadmap highlighting gene expression changes during human pluripotent cell differentiation. Stage-specific analyses led to the identification of 3 previously uncharacterized lncRNAs, TERMINATOR, ALIEN, and PUNISHER, specifically expressed in undifferentiated pluripotent stem cells, cardiovascular progenitors, and differentiated endothelial cells, respectively. Functional characterization, including localization studies, dynamic expression analyses, epigenetic modification monitoring, and knockdown experiments in lower vertebrates, as well as murine embryos and human cells, confirmed a critical role for each lncRNA specific for each analyzed developmental stage.

Conclusions: We have identified and functionally characterized 3 novel lncRNAs involved in vertebrate and human cardiovascular development, and we provide a comprehensive transcriptomic roadmap that sheds new light on the molecular mechanisms underlying human embryonic development, mesodermal commitment, and cardiovascular specification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443804PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013303DOI Listing

Publication Analysis

Top Keywords

cardiovascular development
12
long noncoding
8
noncoding rnas
8
novel lncrnas
8
human pluripotent
8
pluripotent stem
8
cell differentiation
8
human cardiovascular
8
endothelial cells
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!