A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!