In the present paper, a new correction method of baseline drift of discrete spectrum is proposed by combination of cubic spline interpolation and first order derivative. A fitting spectrum is constructed by cubic spline interpolation, using the datum in discrete spectrum as interpolation nodes. The fitting spectrum is differentiable. First order derivative is applied to the fitting spectrum to calculate derivative spectrum. The spectral wavelengths which are the same as the original discrete spectrum were taken out from the derivative spectrum to constitute the first derivative spectra of the discrete spectra, thereby to correct the baseline drift of the discrete spectra. The effects of the new method were demonstrated by comparison of the performances of multivariate models built using original spectra, direct differential spectra and the spectra pretreated by the new method. The results show that negative effects on the performance of multivariate model caused by baseline drift of discrete spectra can be effectively eliminated by the new method.

Download full-text PDF

Source

Publication Analysis

Top Keywords

baseline drift
16
drift discrete
16
discrete spectrum
16
fitting spectrum
12
discrete spectra
12
spectrum
9
correction method
8
method baseline
8
cubic spline
8
spline interpolation
8

Similar Publications

Magnetic circularly polarized luminescence (MCPL) spectroscopy is widely used to evaluate the luminescence dissymmetry factor (g) for compounds. However, even for the same instrument and operating conditions, the measured g is affected by errors associated with sources such as baseline drift and spectral noise, and so the range of variation of g must be considered when comparing values, which requires multiple measurements for the same sample. Also, because many samples undergo photodegradation under excitation light, it is difficult to accumulate and average spectra for samples with weak MCPL signals to improve the signal-to-noise ratio.

View Article and Find Full Text PDF

Single cell micro-absorption spectroscopy system with temperature control: System design and spectral analysis.

Rev Sci Instrum

December 2024

Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China.

Micro-absorption spectroscopy is a useful tool for studying the biological characteristics of single cells. However, the weak spectral signal, due to low absorption caused by the tiny optical path length of the cell, makes the spectral data noisy and difficult to analyze. This paper describes a device for single-cell microspectroscopy measurement that integrates an optical fiber spectrometer and an image CCD within a microscopic system, allowing for the simultaneous acquisition of morphology information and the absorption spectrum of a single cell.

View Article and Find Full Text PDF
Article Synopsis
  • - The study measures rate coefficients for reactions involving hydrated protons and various sample vapors to produce protonated monomers and dimers using ion mobility spectrometry with a tandem drift tube.
  • - The method involves analyzing ions through two drift regions, adjusting for drift times, and fitting curves to derive accurate rate coefficients for specific compounds like triethyl phosphate and phenylacetate.
  • - The proposed technique shows a relative error of 10% and is applicable to a range of substances, indicating it can reliably determine rate coefficients for reactions that form these types of protonated species.
View Article and Find Full Text PDF

Cardiovascular diseases are the leading cause of mortality and early assessment of carotid artery abnormalities with ultrasound is key for effective prevention. Obtaining the carotid diameter waveform is essential for hemodynamic parameter extraction. However, since it is not a trivial task to automate, compact computational models are needed to operate reliably in view of physiological variability.

View Article and Find Full Text PDF

Background: Monitoring tissue oxygenation is critical in liver recipients. The pulmonary artery catheter (PAC) provides continuous monitoring of mixed venous oxygen saturation (SvO) using fiberoptic reflectance spectrophotometry. Despite the need for in vivo calibration during liver transplantation, recalibration guidelines are absent, and we frequently observed a significant discrepancy between PAC and reference co-oximeter SvO values after graft reperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!