Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese woad (Isatis indigotica Fort.).

PLoS One

National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.

Published: January 2016

The giant organs and enhanced concentrations of secondary metabolites realized by autopolyploidy are attractive for breeding the respective medicinal and agricultural plants and studying the genetic mechanisms. The traditional medicinal plant Chinese woad (Isatis indigotica Fort., 2n = 2x = 14) is now still largely used for the diseases caused by bacteria and viruses in China. In this study, its autopolyploids (3x, 4x) were produced and characterized together with the 2x donor for their phenotype and transcriptomic alterations by using high-throughput RNA sequencing. With the increase of genome dosage, the giantism in cells and organs was obvious and the photosynthetic rate was higher. The 4x plants showed predominantly the normal meiotic chromosome pairing (bivalents and quadrivalents) and equal segregation and then produced the majority of 4x progeny. The total 70136 All-unigenes were de novo assembled, and 56,482 (80.53%) unigenes were annotated based on BLASTx searches of the public databases. From pair-wise comparisons between transcriptomic data of 2x, 3x, 4x plants, 1856 (2.65%)(2x vs 4x), 693(0.98%)(2x vs 3x), 1045(1.48%)(3x vs 4x) unigenes were detected to differentially expressed genes (DEGs), including both up- and down-regulated ones. These DEGs were mainly involved in cell growth (synthesis of expansin and pectin), cell wall organization, secondary metabolite biosynthesis, response to stress and photosynthetic pathways. The up-regulation of some DEGs for metabolic pathways of functional compounds in the induced autotetraploids substantiates the promising new type of this medicinal plant with the increased biomass and targeted metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349453PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116392PLOS

Publication Analysis

Top Keywords

cell growth
8
secondary metabolites
8
chinese woad
8
woad isatis
8
isatis indigotica
8
indigotica fort
8
medicinal plant
8
transcriptomic analysis
4
analysis reveals
4
reveals differential
4

Similar Publications

The causal association between cardiovascular proteins and diabetic nephropathy: a Mendelian randomization study.

Int Urol Nephrol

January 2025

Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.

Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.

Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.

View Article and Find Full Text PDF

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!