The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601405 | PMC |
http://dx.doi.org/10.1080/19336896.2015.1022022 | DOI Listing |
Mol Plant
January 2025
Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.
View Article and Find Full Text PDFBackground: Abnormal protein depositions of amyloid β and tau are present in the nasal cavity in patients with Alzheimer's disease. This finding raises an idea that nasal tissues would be a promising source of diagnostic biomarkers for Alzheimer's disease. However, the amounts of amyloid β and tau are extremely small, making it difficult to quantify the levels using conventional methods such as ELISA, and thus it is challenging to utilize them for the diagnostic biomarkers.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France.
Background: Typical Alzheimer's disease (AD) and Limbic-predominant Age-related TDP-43 Encephalopathy (LATE) are two neurodegenerative diseases that present with a similar initial amnestic clinical phenotype but have distinct proteinopathies. AD is characterised by ß-amyloid plaques and intraneuronal neurofibrillary tangles, while LATE is characterised by abnormal neuronal TDP-43 protein. With reference to the prion-like hypothesis regarding the propagation of proteinopathies, investigating white matter fibre bundle alterations could provide new insights into the propagation pathways of specific proteinopathies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Alzheimer's disease (AD) is an heterogenous disorder characterized by the accumulation of amyloid-beta (Aβ) and tau. One possible explanation for the clinical and pathological variation in AD lies in the presence of distinct conformational strains of Aβ. Numerous studies provide compelling evidence for the existence of such strains as well as their ability to template their conformations in a prion-like manner.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
Background: Regional distribution of neurofibrillary tangles consisting of hyperphosphorylated tau correlates strongly with the progression of Alzheimer's disease (AD). Misfolded proteopathic tau templates the conversion of naive tau into a pathological state in a prion-like fashion, which underlies the spreading of tau pathology in the brain. Whether hyperphosphorylation triggers tau aggregation or hyperphosphorylation occurs after aggregation is under much debate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!