Martensitic transformation between competing phases in Ti-Ta alloys: a solid-state nudged elastic band study.

J Phys Condens Matter

Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany.

Published: March 2015

A combined density functional theory and solid-state nudged elastic band study is presented to investigate the martensitic transformation between β → (α″, ω) phases in the Ti-Ta system. The minimum energy paths along the transformation are calculated and the transformation mechanisms as well as relative stabilities of the different phases are discussed for various compositions. The analysis of the transformation paths is complemented by calculations of phonon spectra to determine the dynamical stability of the β, α″, and ω phase. Our theoretical results confirm the experimental findings that with increasing Ta concentration there is a competition between the destabilisation of the α″ and ω phase and the stabilisation of the high-temperature β phase.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/27/11/115401DOI Listing

Publication Analysis

Top Keywords

martensitic transformation
8
phases ti-ta
8
solid-state nudged
8
nudged elastic
8
elastic band
8
band study
8
α″ phase
8
transformation competing
4
competing phases
4
ti-ta alloys
4

Similar Publications

NiMnZ (Z = In, Sn or Sb) undergo martensitic transformation with transformation temperature () scaling with the average valence electron per atom (/) ratio. However, the rate of increase of depends on the type of Z atom, with the slope of / curve increasing from Z = In to Z = Sb. Local structural distortions are believed to be the leading cause of martensitic transformation in these alloys.

View Article and Find Full Text PDF

W-Mo-V high-speed steel (HSS) is a high-alloy high-carbon steel with a high content of carbon, tungsten, chromium, molybdenum, and vanadium components. This type of high-speed steel has excellent red hardness, wear resistance, and corrosion resistance. In this study, the alloying element ratios were adjusted based on commercial HSS powders.

View Article and Find Full Text PDF

Objective: The present study aimed to evaluate the phase transformation behavior and elemental analysis of thermomechanical-treated nickel-titanium (NiTi) rotary instruments, TruNatomy (Dentsply Sirona), HyFlex CM (coltene, Whaledent), and Neoendo Flex (Orikam healthcare India), using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry.

Materials And Methods: A total of 18 NiTi rotary instruments, TruNatomy, Hyflex CM, Neoendo Flex, taper. 04, size 25 (except TruNatomy, size 26) were selected and were divided into three groups ( = 6).

View Article and Find Full Text PDF

Since the rings of the angular contact ball bearings (ACBBs) are typical highly sensitive quenching thin-walled structure, the microstructure and properties variation of the rings during the heat treatment process are often difficult to be controlled precisely, and then the service life of the bearings is reduced. Therefore, in this study, the combination of the numerical simulation and experimental was carried out during the quenching and tempering process of ACBBs (7008C), the phase transformation of the inner and outer ring during the heat treatment process were explored, and the law of the microstructure evolution and the mechanical properties variation were revealed. Firstly, based on the multi-field coupling theory of temperature, microstructure and stress-strain field, the numerical simulation model of the heat treatment process of the bearing rings was established.

View Article and Find Full Text PDF

Shape memory alloys (SMAs) are functional materials with a wide range of applications, from the aerospace sector to the biomedical field. Nowadays, there is a worldwide interest in developing SMAs through powder metallurgy like additive manufacturing (AM), which allows innovative building processes. However, producing SMAs using AM techniques is particularly challenging because of the microstructure required to obtain optimal functional properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!