Enantioselective syntheses of sulfoxides in octahedral ruthenium(II) complexes via a chiral-at-metal strategy.

Inorg Chem

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

Published: March 2015

AI Article Synopsis

  • Researchers developed a method to create chiral 2-(alkylsulfinyl)phenol compounds through an enantioselective coordination-oxidation process involving thioether ruthenium complexes.
  • The synthesis involved forming enantiomerically pure sulfoxide complexes by reacting specific ruthenium complexes with prochiral thioether ligands, followed by oxidation.
  • The research confirmed the stability of these chiral complexes and demonstrated their ability to generate specific sulfoxide ligands based on the configuration of the ruthenium center, achieving high enantiomeric excess in the final products.

Article Abstract

The preparation of chiral 2-(alkylsulfinyl)phenol compounds by enantioselective coordination-oxidation of the thioether ruthenium complexes with a chiral-at-metal strategy has been developed. The enantiomerically pure sulfoxide complexes Δ-[Ru(bpy)2{(R)-LO-R}](PF6) (bpy is 2,2'-bipyridine, HLO-R is 2-(alkylsulfinyl)phenol, R = Me (Δ-1a), Et (Δ-2a), iPr (Δ-3a), Bn (Δ-4a), and Nap (Δ-5a)) and Λ-[Ru(bpy)2{(S)-LO-R}](PF6) (R = Me (Λ-1a), Et (Λ-2a), iPr (Λ-3a), Bn (Λ-4a), and Nap (Λ-5a)) have been synthesized by the reaction of Δ-[Ru(bpy)2(py)2](2+) or Λ-[Ru(bpy)2(py)2](2+) with the prochiral thioether ligands 2-(alkylthio)phenol (HL-R), followed by enantioselective oxidation with m-CPBA as oxidant. The X-ray crystallography was used to verify the stereochemistry of ruthenium complexes and sulfur atoms. The configurations of the ruthenium complexes are stable during the coordination and oxidation reactions. Moreover, the chiral sulfoxide ligands are enantioselectively generated by controlling of the configuration of ruthenium centers in the course of oxidation reaction. That is, the Λ configuration at the ruthenium center generates the S sulfoxide ligand; on the contrary, the Δ configuration of the ruthenium complex originates the R sulfoxide ligand. Acidolysis of Λ-[Ru(bpy)2{(R)-LO-R}](PF6) and Δ-[Ru(bpy)2{(S)-LO-R}](PF6) complexes in the presence of TFA-MeCN afforded the chiral ligands (R)-HLO-R and (S)-HLO-R in 96-99% ee values, respectively. Importantly, the chiral ruthenium complexes can be recycled as Δ/Λ-[Ru(bpy)2(MeCN)2](PF6)2 and reused in a next reaction cycle with complete retention of the configurations at ruthenium centers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic502898eDOI Listing

Publication Analysis

Top Keywords

ruthenium complexes
16
configuration ruthenium
12
complexes chiral-at-metal
8
chiral-at-metal strategy
8
ruthenium
8
configurations ruthenium
8
ruthenium centers
8
sulfoxide ligand
8
complexes
7
enantioselective syntheses
4

Similar Publications

A novel Ru-catalyzed radical-triggered trifunctionalization of hexenenitriles is presented, employing a strategy of remote cyano group migration and -C(sp)-H functionalization. Through remote cyano migration, the alkenyl moiety undergoes difunctionalization to the formation of a benzylic radical intermediate. This intermediate facilitates -selective C-H bond addition relative to the C-Ru bond within the Ru(III) complex, ultimately enabling trifunctionalization.

View Article and Find Full Text PDF

Synthesis and Evaluation of Cytotoxic Activity of RuCp(II) Complexes Bearing (Iso)nicotinic Acid Based Ligands.

Pharmaceuticals (Basel)

January 2025

Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

Background/objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments.

Methods: Building on the auspicious results obtained for [Ru(η-CH)(PPh)(bipy)][CFSO] (TM34), our focus has shifted to examining the effects of incorporating bioactive ligands into the TM34 framework, particularly within the cyclopentadienyl ring.

View Article and Find Full Text PDF

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

Background/objectives: Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines.

View Article and Find Full Text PDF

Enhanced Electrochemiluminescence from Ruthenium-Tagged Immune Complex at Flexible Chains for Sensitive Analysis of Glutamate Decarboxylase Antibody.

Biosensors (Basel)

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China.

Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical characterizations confirm the loose structure of the assembled layer with the immune complex, providing an increase in the current and the resultant enhanced ECL emissions. Comparing the sensors with the rigid structure, a 34-fold increase in the maximal ECL emission is recorded when PEG3400 is used as a linker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!